
CONVOLUTIONAL NEURAL NETWORK
ARCHITECTURE STUDY FOR AERIAL

VISUAL LOCALIZATION

THESIS

Jedediah Mark Berhold, Captain, USAF

AFIT-ENG-MS-19-M-010

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.



AFIT-ENG-MS-19-M-010

CONVOLUTIONAL NEURAL NETWORK ARCHITECTURE STUDY FOR

AERIAL VISUAL LOCALIZATION

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Jedediah Mark Berhold, B.S.E.E.

Captain, USAF

March 21, 2019

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



AFIT-ENG-MS-19-M-010

CONVOLUTIONAL NEURAL NETWORK ARCHITECTURE STUDY FOR

AERIAL VISUAL LOCALIZATION

THESIS

Jedediah Mark Berhold, B.S.E.E.
Captain, USAF

Committee Membership:

Dr. Robert C. Leishman, PhD
Chair

Dr. John F. Raquet, PhD
Member

Dr. Donald T. Venable, PhD
Member



AFIT-ENG-MS-19-M-010

Abstract

In unmanned aerial navigation the ability to determine the aircrafts’s location is

essential for safe flight. The Global Positioning System (GPS) is the default modern

application used for geospatial location determination. GPS is extremely robust, very

accurate, and has essentially solved aerial localization. Unfortunately, the signals from

all Global Navigation Satellite Systems (GNSS) to include GPS can be jammed or

spoofed. To this response it is essential to develop alternative systems that could be

used to supplement navigation systems, in the event of a lost GNSS signal.

Public and governmental satellites have provided large amounts of high-resolution

satellite imagery. These could be exploited through machine learning to aid onboard

navigation equipment to provide a geospatial location solution. Deep learning and

Convolutional Neural Networks (CNNs) have provided significant advances in specific

image processing algorithms.

This thesis will discuss the performance of CNN architectures with various hyper-

parameters and industry leading model designs to address visual aerial localization.

The localization algorithm is trained and tested through satellite imagery of a local-

ized area of 150 square kilometers. Three hyper-parameters of focus are: initializa-

tions, optimizers, and finishing layers. The five model architectures are: MobileNet

V2, Inception V3, ResNet 50, Xception, and DenseNet 201.

The hyper-parameter analysis demonstrates that specific initializations, optimiza-

tions and finishing layers can have significant effects on the training of a CNN architec-

ture for this specific task. The lessons learned from the hyper-parameter analysis were

implemented into the CNN comparison study. After all the models were trained for

150 epochs they were evaluated on the test set. The Xception model with pretrained
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initialization outperformed all other models with a Root Mean Squared (RMS) error

of only 85 meters.
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CONVOLUTIONAL NEURAL NETWORK ARCHITECTURE STUDY FOR

AERIAL VISUAL LOCALIZATION

I. Introduction

Aerial visual localization was the first avigation method used in manned flight[1].

Since that time a more accurate and dependable localization tools have been devel-

oped, to include the state of the art GNSS, which have furthered the development of

unmanned avigation systems. It is possible for adversaries to jam or deny GNSS sig-

nals, presenting a renewed need for visual localization in unmanned flight. This thesis

evaluates CNN models, that have recently revolutionized image processing in general,

as a novel solution to conduct aerial visual localization. Multiple CNN parameters

and model architectures will be analyzed on a dataset designed for this task.

This thesis is organized as follows: Chapter I provides a brief overview and ob-

jectives this research is attempting to solve. Chapter II goes into the advances of

visual avigation, the coordinate systems, and the hyper-parameters and architec-

ture advancements for CNNs. Chapter III discusses the processes used to built the

dataset, the system and CNN model architecture, and the methodology to evaluate

performance. Chapter IV provides the results of a model hyper-parameter study, and

CNN architecture comparison. Finally, ChapterV discusses the conclusions drawn

and future improvements to this approach for aerial visual localization.

1.1 Problem Background

Avigation, or aerial navigation, has come a long was since the earliest days of flight

where pilots navigated with maps, compass, sextant, and course calculators[1]. We
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now have unmanned flight where aircraft navigate without the assistant of pilots using

signals from space through GNSS. Unfortunately, GNSS signals can be denied[2].

Visual avigation is part of a solution that could aid the aircraft through a signal

disruption environment. In unmanned avigation, if signals cannot be properly sent

and received from the aircraft, visual localization must be done algorithmically on-

board.

Visual odometry is an effective way to detect changes in position and location.

Effective algorithms have been developed by the authors of [3, 4, 5, 6, 7, 8, 9, 10, 11,

12]. Visual odometry Artificial Neural Network (ANN) solutions have been developed

by the authors of [13, 14, 15, 16, 17, 18] With odometry solutions, errors will exist and

slowly perpetuate over time, leading to a lack of global consistency in the position

and orientation estimates. The focus of this research is to address these errors though

a visual localization CNN.

CNNs are a subset of ANNs which were developed in 1943, but due to the pro-

cessing complexity they had not been used for mainstream image processing un-

til the authors of [19] outperformed all the other image classification algorithms

with a CNN model ‘AlexNet’ in the 2012 Imagenet competition. Since that time,

significant advances have been developed to further improve the performance of

CNNs[20, 21, 22, 23, 24, 25, 26, 27, 20, 28, 29, 30, 31].

Some of the improvements in CNNs stem from the extensive work in hyper-

parameter development. Advances in methodologies to improve the way weights are

initialized in untrained networks to speed up the learning process and improve gen-

eralization were developed in [20, 32, 33, 21]. Model optimizers control the process of

weight updates during training, and advances in optimizer improvement are observed

in [34, 35, 22, 23]. Finishing layers are trade tools to format the CNN output layers

into the prediction layer; various finishing layer techiques are shown in [24, 25, 26, 27].
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With all this work on hyper-parameter development, which hyper-parameters work

best for aerial visual localization? This research will perform a study on the affects

of these hyper-parameters for this task.

Since ‘AlexNet’[19], the 2012 Imagenet dataset has become the benchmark to test

the performance of new CNN architectures. Significant advancements in network size

and accuracy have been made in [28, 36, 29, 30, 37, 38, 31]. Can these advancements

be leveraged for this aerial visual localization? Which network performs the best for

this task? This research will study the training and performance of leading CNN

architecture designs for aerial visual localization.

1.2 Research Objectives

This research focuses on the effect of model hyper-parameter and architecture

design performance in aerial visual localization. To advance this work, this research

attempts to meet the following objectives:

• Establish a reliable dataset to perform side by side model comparisons for visual

aerial localization.

• Analyze various CNN hyper-parameters and their effect on the training and

testing of a model on the dataset.

• Compare the performance of multiple industry-leading CNN model architec-

tures’ in both training and testing on the dataset.

1.3 Limitations and Assumptions

This research is focused on studying the effects of CNN variations on a visual aerial

localization dataset. This makes the dataset’s affect on this project paramount. The

dataset is designed from satellite imagery with nearly sun synchronous orbits[39].
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This means that the images are taken around the same time each day. This limits the

dataset purely to daytime navigation and excludes more difficult times like dawn and

dusk. Sample images had no image enhancement steps, such as contrast adjustment,

hue distortion, etc. added. The lack of enhancements could affect the network, by

training the model to figure out which satellite took the picture and where the satellite

was, as opposed to where the image is in the area of interest. Finally, the satellite

coverage over the area of interest is not uniform and there is a higher density of

satellite imagery closer to the bounds of the area than in the center.

The dataset limitations were balanced by conducting the training and testing

from two separate datasets. This does not remedy the daytime limitation, but a

network that trained to figure out the satellite would not be able to translate that

skill to the testing dataset. While image enhancement methods could be useful in

future iterations, the separate datasets will provide a method to verify the learning

of image feature detection. The non-uniform area coverage was accepted as it could

tend to pull incorrect network classifications to the extreme values, which could help

emphasize the network errors during training.

Additional limitations stem from the CNN itself. While CNN processing has come

a long way since the beginning, there remains an extremely high level of processing

to train and test the CNN. Consequently, there are major limitations on the input

image size. Aerial photography can produce high resolution imagery, and the network

operations to process those images would require a massive computing infrastructure.

All the models used in this architecture can be run on fairly light-weight systems,

but this requires a reduced image size. This research uses a 224 × 224 × 3 image

size. Aerial imagery larger than this would require a prepossessing step to format the

image to the correct size.
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II. Background

This chapter provides information and literature that is relevant to various aspects

of this thesis. The sections of this chapter are organized as follows: Section one dis-

cusses aspects of aerial navigation or avigation[40] with emphasis on visual navigation

and GNSS. Section two discusses coordinate systems with emphasis on the World

Geodetic System 1984 (WGS84), Earth Centered Earth Fixed (ECEF), and North

East Down (NED). Section 2.3 discusses deep learning with emphasis on ANN, CNN,

and advances in CNN design. Sections 2.4 through 2.7 go into further depth on CNN

design. Section 2.4 discusses network weight initializations; 2.5 reviews optimizers;

finishing methodologies are described in 2.6, and 2.7 discusses specific benchmark

CNN designs.

2.1 Avigation

Aerial navigation, also known as avigation[40], is an expansive and diverse field

of study. This section reviews topics pertinent to this study namely visual and satel-

lite avigation. Visual avigaton reviews the drawbacks and technological advances in

Unmanned Aerial Vehicle (UAV) flight. The GNSS section discusses how satellite

systems augment avigation and potential issues.

2.1.1 Visual Avigation

Avigation[40], in the earliest days of flight was essential, but also a challenging

problem[1]. Early aviators used basic means, such as a compass, maps, course cal-

culators, and sextants[1] to determine the aircraft’s position and direction. These

individuals relied on a keen sense of direction and comparing the landmarks they

observed from the aircraft’s window to those on their maps[1]. This avigation was
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eventually supplemented with more advanced instrumentation, such as drift recorders

and radio based air position indicators[1], but the ability to identify one’s location

based on visual avigation remained essential.

Visual avigation is more than simply looking out the window. Aircrew would

use all the tools at their disposal to determine their location. They would integrate

compass, horizon and slip gyroscopes, airspeed indicators with visually recognized

landmarks[1]. Determining ones position from direction and velocity over time from

a known point of departure is known as dead reckoning. Aircrew would depend on

dead reckoning to get through segments where it was difficult to visually identify

a known landmark such as over oceans, farm fields, or with high cloud cover[40].

Visual avigation was rarely used for extensive navigation without augmentation of

instrumentation[1].

Avigation was divided into two parts geo-avigation where one would locate objects

viewed outside the aircraft, and aerial astronomy which includes navigating by the

stars[40]. This thesis addresses the geo-avigation aspect of visual avigation. This

methodology has significant challenges such as darkness and obstruction by clouds,

similar landmarks, etc. It is difficult for pilots to visually navigate effectively through

these conditions without instrumentation augmentation, and even more challenging

to design an automated algorithm to visually navigate.

In modern-day unmanned aviation there have been significant advances in auto-

mated visual avigation. Aerial visual odometry, using a monocular camera to detect

changes in position and location, algorithms were developed in [3, 41, 6, 7, 9, 10,

11, 12]. The authors in [3, 41, 6] provided attitude and position updates through an

Extended Kalman Filter (EKF). Automated visual location identification algorithms

were developed in [5, 42]. [5] utilized high resolution satellite imagery to develop a

Scale Invariant Feature Transform (SIFT) feature database; then with the Inertial
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Measurement Unit (IMU) and visual inputs determined a correct location rate of

70%[5]. Visual navigation was used in [43, 16] for formation operations. Robust vi-

sual systems have been developed for aircraft landing such as [44, 45] which utilizes

the optical flow to determine the distance from the ground. Advances in GNSS denied

indoor avigation were illustrated in [46, 41, 6, 7, 47].

There has also been some work in visual odometry utilizing ANNs. The authors

in [13, 14, 15] used semi-supervised training develop CNN and Recurrent Neural

Network (RNN) visual odometry models using a monocular camera dataset. Authors

of [48] utilized multiple CNN models to determine a semantic segmentation of the

environment, a global pose regression, and two additional models to determine a

visual odometry estimation. Authors of [49] utilized RNNs to generate additional map

segmentations utilizing imagery. Work has been done by [50] on location identification

based off camera images. Additional work in visual odometry using CNNs and RNNs

can be found in [16, 17, 18].

2.1.2 Global Navigation Satellite System

GNSS systems are have become essential to aerial localization[51]. GNSS in avi-

gation is used for communication, air traffic management, aircraft to aircraft opera-

tions in addition to localization[51]. GNSS has enabled a reduction in ground-based

navigation aids and aircraft avionics[51]. Prior to GNSS Very High Frequency Omni-

directional Range (VOR) stations were placed around the United States for aircraft

to triangulate their location. The VOR system is expensive to maintain and is in the

process of being decommissioned leaving GNSS to fill in the gaps[52].

Modern GNSS provides much more accurate location information compared to

VOR[53]. Unfortunately GNSS and VOR signals can be jammed or spoofed which

can deny or provide inaccurate location information[2]. As such an autonomous
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military aircraft must be robust enough to manage a GNSS contested environment.

2.2 Coordinate Systems

Describing the aircraft’s relation with the surrounding world is essential to relate

the aircraft’s body frame and the world frame. This thesis will focus on three world

frames: the World Geodetic System 1984 (WGS84), the Earth Centered Earth Fixed

(ECEF), and the North East Down (NED) coordinate frames. Each one of these

coordinate frames has its benefits and drawbacks when relating to the aircraft body

frame.

The WGS84 reference frame is a geodetic model used by GPS. WGS84 represents

location as the degree offset from the prime meridian, the equatorial plane, and height

above sea level, as shown in Figure 2.

Sometimes calculating the world’s shape to determine location can be cumber-

some. If so, a geocentric coordinate system, such as ECEF, could be a better fit.

ECEF utilizes the center point of the Earth as the origin and establishes the x axis

along the prime meridian and equatorial plane. The y axis is 90◦offset from the x

axis also on the equatorial plane, and the z axis is pointing north as seen in Figure 2.

The benefit of ECEF is its ability to determine linear distance quickly, and can be

useful for satellite and special flight calculations.

When working in a small localized area it may be an adequate to approximate

the small segment of the globe as flat, because WGS84, and ECEF make coordinate

computations more complex. A localized coordinate system, like NED, could be bet-

ter in these circumstances. NED establishes a localized plane tangential to Earth at

a specific reference point on the surface of the Earth, as seen in Figure 2. Variability

from the globe and NED is negligible for a relatively small region and allows calcula-

tions to become more intuitive. NED does not work with large globe sections where
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relative locations can be distorted as a result of the curvature of the Earth.

Figure 1. Aircraft body frame.

2.2.1 World Geodetic System 1984

The National Geospatial Intelligence Agency (NGA) determined a geodetic model

of the world to be used in United State’s GNSS system GPS. A previous geodetic

model WGS 72 was insufficient in adequately describing the world’s geometry for

satellite navigation timing and communication, so the geodetic community came to-

gether in the early 1980s to establish WGS84[54]. This update was possible due to

extensive altimetry and gravity data from the GRACE satellite mission as well as

more accurate geodesy models[54]. The current WGS84 continues to be updated as

more precise information is available, and has become the standard reference system

due to its accuracy and the global usage of GPS.

The location coordinates in the WGS84 are ellipsoidal. The zero line in the longi-

tudinal direction is the Greenwich meridian, and latitudinal is the Equatorial plane.

Longitudinal offsets in Figure 2 are displayed as λ and represent a change in degree

on the x, y plane measured as a rotational angle from −180◦ to 180◦. The latitudinal
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offsets are displayed as φ, and represent a change in degree in the z direction from

−90◦ to 90◦[55, 56, 57]. WGS84 height variable or h is calculated as the ellipsoidal

altitude. A traditional ordering of WGS84 coordinates would be (φ, λ, h).

North Pole

Greenwich Meridian

X

Y

Z

Equatorial Plane

λ

φ

N

E

D

Figure 2. Diagram relating WGS84, ECEF and NED coordinate systems and their re-
lationships. The graphic represents a simplified version of the WGS84 ellipsoid model.
Black arrows are ECEF coordinates, and blue arrows are NED coordinate system cen-
tered at a specific location on the Earth.

2.2.2 Earth Centered Earth Fixed

The ECEF coordinate system utilizes geocentric rectangular (Cartesian) coordi-

nates (x, y, z) that we learned to love from our mathematics courses[58]. The conver-

sion from geodetic to Cartesian coordinates is seen in Equation 1[59].
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X = (RN + h) cosφ cosλ

Y = (RN + h) cosφ sinλ

Z =

(
b2

a2
RN + h

)
sinφ (1)

In Equation 1, RN is the prime vertical’s radius of curvature and is given in

Equation 2. a is the semi-major axes of the ellipsoid, and b is the semi-minor axes of

the ellipsoid. ε is the eccentricity and it is related to the semi-major and semi-minor

axes by Equation 3[59].

RN =
a2√

a2 cos2 φ+ b2 sin2 φ
=

a√
1− ε2 sin2 φ

(2)

ε2 =
a2 − b2

a2
(3)

Conversion from ECEF is slightly more difficult and a concise definition is de-

scribed in [58]. ECEF can be an efficient system when calculating orbits, and can be

potentially useful when extensive calculations need to occur with respect to a change

in an object’s location. ECEF can prove difficult to manage when a localized area is

small enough to project it as a flat plane. For this purpose NED would be a better

fit.

2.2.3 North East Down

NED is a localized coordinate system used to simplify operations when the working

area is sufficiently small that the curvature of Earth is negligible[57]. NED treats the

area as a flat plane where the centerpoint of the coordinate system is tangential to

the curvature of Earth. This is represented graphically in Figure 2. The x axis points
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toward the ellipsoid North, the y axis points to the ellipsoid East, and the z axis

points normal to the ellipsoid[56, 57]. The transformation of a point from ECEF

to NED is described in Equation 4. (x, y, z)ref,ECEF is the reference point in ECEF

coordinates of the origin or center point of the NED coordinate system; (x, y, z)ECEF

is the location of the point in ECEF coordinates, and RNED
ECEF is the rotation matrix

from ECEF from to localized NED frame as seen in Figure 5[56].

(x, y, z)NED = RNED
ECEF ((x, y, z)ECEF − (x, y, z)ref,ECEF ) (4)

RNED
ECEF =


− sinφref cosλref − sinφref sinλref cosφref

− sinλref cosλref 0

− cosφref cosλref − cosφref sinλref − sinφref

 (5)

Using the NED coordinate system is especially applicable to smaller UAVs as their

field of operation is relatively small when compared to the curvature of Earth[56].

When establishing a NED coordinate system it is important to determine the center

reference point properly. Often the takeoff position is selected as the reference point

for the NED coordinates[56]. Aircraft height h is measured in the −z range for NED.

2.3 Deep Learning

The heirarchy of graphs that builds complex concepts out of layering simple ones

is deep learning[60]. Deep learning has recently become popular because of its abil-

ity to generalize specific problems better than custom designed algorithms[19]. This

section will focus on Artificial Neural Networks (ANNs) and more specifically convo-

lutional neural networks (CNNs) which are the focus of this thesis. It will describe

fundamental aspects of modern CNNs that can be used to tailor networks.
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2.3.1 Artificial Neural Networks

The concept of a neural network has been around since the early days of comput-

ing presented by [61] in 1943. These networks borrowed the biological term ’neurons’

to represent weighted activation functions. By connecting a network of these neurons

with different weights it was possible to represent specific logic functions. The com-

putational ability of the time was not sufficient for complex tasks, yet incremental

advancements were made[62, 63, 64, 65]. The modern viability of the neural net-

work for image processing came with the success of ‘AlexNet’ in the 2012 ImageNet

competition[19]. AlexNet changed image classification standards and created a rush

to CNNs as a viable methodology of machine learning.

2.3.2 Convolutional Neural Networks

The CNN was first introduced in 1988[66]. CNNs convolve a weighted kernel ma-

trix across the input, as seen in Figure 3, as opposed to fully connecting all neurons.

This practice afforded the network to work well with images and allowed for pat-

tern recognition tasks. Due to the technology of this era computation was difficult

for complex networks and CNNs were mostly used for toy problems. A significant

advancement came in 1998 with the introduction of gradient descent for network

learning by [33]. This provided the basis to update the network and bias weights in a

computationally light and effective manner. While CNNs remained computationally

heavy at the time, this was a significant advancement in modern CNN training. The

attention dedicated to CNNs increased dramatically when [19] outperformed tradi-

tional image processing techniques on the ILSVRC-2012 dataset. Since that time

many additional developments have occurred to optimize these networks
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Figure 3. The left side is an example of a 3x3 convolution with one filter. The extra
dimension on the convolution is the input’s depth. The right side is a 3x3 convolution
with 8 filter layers. Note that each filter has individual trainable kernel weights.

2.3.2.1 Further Advances in Convolutional Neural Networks

There are an abundance of techniques that have been used to modify and improve

CNNs. A comprehensive overview would span volumes, so only specific items that

will be a benefit to later topics will be discussed. First will be techniques to preserve

dimensionality and techniques to manage reduction and size manipulation. Next

will be methods that manage the way weights are updated and normalized during

network training. Finally, an overview of how to combine advanced graph structures

into usable outputs is reviewed.

A convolution with a 3x3 kernel size, like that in Figure 3, has an output with

a reduced size. This can be useful as the later convolutions require slightly less

computations, but can be an obstacle when advanced concatenations are required,

such as those in Figure 5. To address this [28, 67, 37, 30] used padding and stride

to manipulate the outputs of a convolution layer. ‘Same’ padding refers to adding

zeros at the edges of the input matrix to enforce the same dimensions in the output.

Padding allows for advanced directed acyclic graphs without specialized operations to

retain shapes. Adjusting the convolution stride affords a quick way to cut the output

in half. Strides are the steps taken in a convolution between each kernel. A stride
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of one is the traditional convolution that provides the output in Figure 3; a stride of

two convolves the kernel with every other member of the matrix. Higher strides are

possible, but rarely implemented in practice due to the information loss.

Other network training techniques such as batch normalization and dropout have

become a standard in CNNs. Batch normalization as described in [38] is commonplace

for CNN architectures [31, 28, 67, 37, 30]. As a network size increases, the effect of

weights can saturate the results. Batch normalization is used to reduce this effect

in networks. Batch normalization maintains the activation’s mean close to zero and

the standard deviation approximately one[38]. Dropout is another technique used to

reduce over saturation of specific weights[68]. Dropout takes a certain percentage of

the output from the previous layer at random and does not pass those weights to the

next layer. This forces the network not to depend on a small number of parameters

to make major decisions, but spread the decision making across the network[68].

Performing multiple operations from the same input, or combining results from

a previous layer, can add great benefits to a CNN[36, 37]. The question is how

to combine them back together? There are two popular methods: addition and

concatenation. Addition, as used in [37], requires the dimensions of the two layers

to be the same and adds the weights of the two in an output layer with the same

dimensionality. Concatenation, as used in [36], allows for one of the dimensions to

be different from the others and concatenates across the chosen dimension, which, in

practice, is typically the dimensionality of the layers. For example, if the weighted

output of layer one x1, with a size of 18×18×4, and layer two x2, with a size of 18×

18×4, the residual addition would be (x1+x2) retaining the original dimensions of the

input:18×18×4. Concatenation would result in x1, x2 and expand the dimensionality

typically along the last axis; in this case: 18× 18× 8
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2.4 Initializations

This section discusses methodologies to initialize the various weights for a network.

A proper initialization can be taken for granted in CNN infrastructures, but for deep

networks they have a significant role to play[32]. A normalized initialization has

resulted in reducing the problems of vanishing and exploding gradients[37]. A good

initialization can lead to a faster trained network, and some networks need a good

initialization to be trained[69]. Advancements in initializers have essentially replaced

unsupervised pretraining. A regularizing initializer provides a better baseline for the

optimizer and tends to produce improved generalization[32].

Three common initializers are Glorot normal[20], Glorot uniform[20], and orthogonal[20].

Glorot Normal and Glorot Uniform initializers were developed based on best perfor-

mance through experimentation and monitoring hidden layer weights[32]. Orthogonal

initializers developed in [20] determined a scaled random orthogonal initialization re-

duced the issues of exploding and diminishing gradients while providing significant

benefits in the learning process[70].

2.4.1 Glorot Normal

The authors in [20] demonstrated that a carefully scaled random initialization

exhibits faster convergence than the traditional arbitrary random initialization. This

was the formation of Glorot initializations. The method for scaling standard deviation

is displayed in (6) where σ is the standard deviation.

σ =

√
2

inputUnits+OutputUnits
(6)

This initialization provides a truncated random normal distribution, which is cen-

tered on zero, and scaled by the input units and output units of the weight ten-
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sor. While a pretrained initialization still exhibits faster convergence, the Glorot

normal exhibits significant convergence for diverse datasets over a random uniform

initialization[20].

2.4.2 Glorot Uniform

Prior to carefully scaled initializers, it was commonplace to perform unsupervised

pretraining on neural networks to afford state of the art results[20]. Since the advance-

ment of second order optimizers and better initializer design, unsupervised pretraining

is all but obsolete[69]. Currently the default initializer for untrained convolutional

kernels in Keras is the Glorot uniform[71]. The Glorot uniform in Equation 7 il-

lustrates the upper and lower bounds to a random distribution which makes up the

kernel initialization weights.

± limit =

√
6

inputUnits+OutputUnits
(7)

The number of input units and output units in the weight tensor are utilized to

scale the limits of this initializer. Glorot initializers work well for many applications,

and it has shown superior performance when ReLU activations are used[69].

2.4.3 Orthogonal

In traditional image processing, filters are designed to extract information from

the image. Convolutional filter weights in CNNs perform similar tasks once trained.

Establishing an orthogonal initialization has the effect of a pass-through filter at an

arbitrary orientation. The orthogonal initialization in [20] is explained in Equation 8

where W is the weight matrix and R is an arbitrary orthogonal matrix, M is a

diagonal matrix, and Q are eigenvectors of an input output correlation matrix[20].
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W = RMQT (8)

Orthogonal initializations lead to productive gradient propagation in deep linear

and nonlinear networks. Under the correct conditions, this initialization provides an

amplification of the neural activity through the weights, as well as balancing damp-

ening activity. As the optimizer back-propagates Jacobians, the Jacobians propagate

in a nearly isometric manner[20]. These characteristics are especially beneficial in

networks dealing with images such as the ones in this thesis.

2.5 Optimizers

One of the great advances in neural networks was the development of improved

optimizers. These were a key part in replacing unsupervised pretraining. Second or-

der momentum-based optimizers with carefully scaled initializers have enabled state

of the art performance without a pretrained network[20]. These second order opti-

mizers use the process of gradient descent, which is a way to minimize an objective

(or loss) function of a models parameters by updating in the opposite direction of

the loss function gradient with respect to the parameters[72]. The optimizer’s path

follows the slope of the loss function surface downhill to a valley[72]. Locating the

minimization or maximization requires its parameters to contain a differentiable loss

function[22]. Stochastic Gradient Descent (SGD) led to many successes and advance-

ments in deep learning. Because loss functions are composed of a sum of subfunctions

evaluated at different data subsamples, SGD takes gradient steps down the individ-

ual subfunctions[22]. With noisy data, SGD could have a difficult time locating and

often overshoots local minimum[22][72]. SGD does not factor the data characteris-

tics, which led to the development of Adaptive Gradient Algorithm (AdaGrad)[34].

AdaGrad was designed to incorporate the geometry of data previously observed, thus
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frequently observed data has a lower learning rate than infrequent data with a higher

rate[34]. Unfortunately, AdaGrad produced diminishing learning rates. Three opti-

mizers that address the learning rate issues while capturing the benefits of AdaGrad

are RMS prop, AdaDelta[35], and Adam[22].

2.5.1 RMSprop

RMSprop was developed from an unpublished lecture by Geoff Hinton[72]. To

address the diminishing gradients from AdaGrad, RMSprop divides the learning rate

by a running average of the magnitudes of recent gradients[72]. It uses a discounted

history of the squared gradients as a form of preconditioner[73]. RMSprop has be-

come one of the standard methods to train neural networks beyond SGD[74]. It has

outperformed other adaptive methods such as AdaGrad, AdaDelta, and SGD in a

large number of specific tests[74]. All of these factors have led RMSprop to be a

major contributor as a deep learning optimizer

2.5.2 AdaDelta

AdaDelta[35], like RMSProp, utilizes a preconditioner and introduces the addi-

tional statistic of the expected squared change of the weights, which rescales the step

size proportionally to its history[73]. AdaDelta corrects for the decreasing learning

rate featured in AdaGrad by restricting the window of past gradients to a decaying

average of past squared gradients. The running average depends only on the previous

average and the current gradient[72]. The computational overhead is minimal over

SGD[35]. Another advantage to AdaDelta is that an initial learning rate is not an

important factor in this optimizer because the dynamic learning rate is computed on

a per-dimension basis using first order information[35]. These factors allow AdaDelta

to continue adapting the learning rate even after many iterations.
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2.5.3 Adam

Adaptive Moment Estimation, or Adam, like AdaGrad, computes adaptive learn-

ing rates for each parameter. Also like RMSprop and AdaDelta, Adam saves an

exponentially decaying average of past squared gradients[72]. The thing that sets

Adam apart is an exponentially decaying average of past gradients, which works sim-

ilar to momentum[72]. Adam also requires only first-order gradients and has a small

memory requirement[22]. Adams advantages over RMSProp are that the magnitudes

of parameter updates are invariant to gradient rescaling, which works well with sparse

gradients, and performs a form of step annealing[22].

2.6 Finishing

The task for the finishing layer is to convert the shape of the network into a

shape compatible for the classification layer. The traditional way to complete this

operation is to flatten the outputs of the convolution layers into a single string of

values. This flattens the output of the previous layer, yet retains every value. An

alternative method, recently becoming popular for classification tasks, is a global

average pooling layer; which reduces the dimensionality of each filter into a single

value per filter.

2.6.1 Flatten

Using a layer to flatten the outputs of the convolutional layers prior to a dense

classification layer, and allows quick management and retention of the convolutional

output. This affords the fully connected layer all the information from the previous

layer while reshaping to prepare for the CNN model’s output. This, depending on the

output of the convolution layers, could create cumbersome amount of fully connected

weights for the classification layer. The authors in [24] determined that a flattening
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layer was less stable during training but it increased convergence speed over a global

average pooling layer for their specific task. While average pooling has shown signifi-

cant advantages in some classification problems, flattening layers show advantages in

various applications from adversarial networks to self-driving cars[24][25].

2.6.2 Global Average Pooling

Pooling layers have been commonplace in CNN architecture to reduce dimension-

ality andextract valuable kernel information. Pooling layers in CNNs summarize the

outputs of neighboring groups of neurons in the same kernel map[19]. While pooling

layers are commonly used as hidden layers throughout CNNs, a recent trend is to

utilize a global average pooling that captures the average of each filter at the end

of a deep network prior to a fully connected dense classifier. Global average pool-

ing is utilized in state-of-the-art classification problems. It increased model stability,

but hurt convergence speed in [24]. Global average pooling in [26], with the fully

connected dense layer improved semantic segmentation results[26]. A global average

pooling layer enforces correspondence between feature maps and categories. It also

reduces overfitting and is less dependent on dropout regularization[27]. This affords

tolerances to vary which can be essential to object recognition[70].

2.6.3 Global Max Pooling

Global max pooling also has its place in CNNs. Max pooling layers are often

found throughout CNN architectures as hidden layers, like those found in inception

modules[36]. Global max pooling is also evaluated with the same intent as a global av-

erage pooling layer. Global average pooling identifies the extent of an object, where

global max pooling emphasizes the discriminative parts[75]. While global average

pooling outperforms global max pooling for a specific localization task, global max
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pooling achieves similar classification performance as global average pooling[75]. Max

pooling passes the most dominant features and thus mimics the spatial selective at-

tention mechanism of humans, conferring the more important aspects of an image[70].

Whether average or max, pooling helps to make the representation invariant to small

translations of the input[60].

2.7 Benchmark CNN Architectures

This section discusses some of the groundbreaking architectures in CNNs that

are relevant to this thesis work. AlexNet propelled the development of modern

CNN design[19]. MobileNet focused on smaller applications for deep learning[28].

Inception provides advanced processing with directed acyclic graphs[67]. ResNet in-

troduced adding residuals to reduce diminished gradients, which allows for deeper

networks[37]. Inception-ResNet attempted to bring the two technologies together for

deeper more connected networks[30]. Xception combined the advances from ResNets

and Inception with depth-wise separable convolutions creating a light, yet well per-

forming network[76]. Finally, DenseNet introduces a super connected network to

increase the feed-through of earlier layers into the latter[31] .

2.7.1 AlexNet

AlexNet designed by [19] was not used experimentally in this research, but the in-

fluences from this early CNN architecture has revolutionized the usage of CNNs. The

major advancement from AlexNet was the usage of Graphics Processing Unit (GPU)s

for training the neural network. Before this time, training CNNs was extremely time

intensive and limited due to the architecture design of the computer’s Central Pro-

cessing Unit (CPU). The CPU is designed to run all the systems operations, and this

led to a processor that is the jack of all trades and master of none. The advance-
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ment of graphics intensive applications facilitated the need of a specialized GPU that

could process the advanced graphics matrix transformations. Utilizing this processing

capability is where AlexNet shined. This advancement in training has become the

standard that modern CNNs use to train their networks. AlexNet utilized two GTX

580 3GB GPUs [19]. GPUs are well suited for cross-GPU parallelization, and can

read and write to the other’s memory without the host machine[19]. The authors

of [19] took advantage of this in the training which allowed for a larger and deeper

network with quicker training times.

Another benchmark advancement from AlexNet was the usage of the ReLU acti-

vation function. While there are many non-linear activation functions available, the

ReLU has proven to work extremely well with very low overhead in convolutional

layers. The implementation of normalization and pooling also aided to a better per-

formance while reducing over fitting. To enhance the dataset and prevent over fitting

two forms of data augmentation were performed. The first was generating image

translations and reflections of the original dataset, and the second was altering the

intensities of the RGB channels in the training images[19]. Enhancing the dataset

is important in training to afford the model the ability to ’learn’ information that

is outside the dataset’s shortcomings. Since AlexNet was the predecessor to modern

CNNs, it utilized the best optimizer available at the time: SGD. Weights were initial-

ized with a Gaussian distribution and a standdard deviation of 0.01. Finally, AlexNet

dramatically outperformed the nearest competitor in the ImageNet competition. The

error rate for AlexNet was 10.9% better than the second place method.

2.7.2 MobileNet V2

The MobileNet V2 architecture developed in [28] was designed for mobile resource-

constrained systems. This network is an evolution of the previous MobileNet archi-
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tecture design[77]. The network was created for computer vision applications, as

it decreases operations and memory needed by equivalent performing architectures.

MobileNet V2 uses depthwise-separable convolutions which allow similar results as

convolutional layers, but decreases the individual layer computations. Instead of hav-

ing a 3D kernel like the traditional convolution the depthwise-separable convolution

convolves each filter independently then uses a pointwise 1x1 kernel to combine the

filters.

One of the great benefits of convolutional neural networks is their effective extrac-

tion of non-linearities [28]. In a real multi-dimensional space, <n, the ReLU produces

a piecewise curve with n-joints. ReLU can work effectively as a linear discriminator

in a multi-dimensional space, but when used, information from the channel is lost[28].

This is why MobileNet V2 developed inverted residuals with linear bottlenecks. The

linear bottleneck is designed to retain important information in the network and

diminish the effects of nonlinearity functions, such as ReLu, from destroying the lin-

ear data. The inverted residual pulls the linear bottlenecks to the outside of the

depthwise-separable convolutional layers and adds the bottlenecks from a previous

segment. Pulling the bottlenecks to the outside has proven to be more memory ef-

ficient and increased performance in [28]. This allowed MobileNet V2 to retain the

simplicity of MobileNet while significantly improving the accuracy in specific image

detection and classification tasks [28]. In comparison to performance and size Mo-

bileNetV2 could attain similar performance with MobileNetV1 with using only 200K

parameters compared to 800K with MobileNetV1[78, 28] .

The final innovation of MobileNet V2 are the inverted residuals. Residuals are

connections from an earlier layer in a network added to a later layer. These connec-

tions are effective at battling diminished gradients. As the network back propagates

the loss during training, a deep network could have difficulty with the losses being di-
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minished and earlier layers receiving minimal, or negligible, updates during training.

This methodology first presented in [37] is also used by [28]. A significant differ-

ence in MobileNet V2 is the inverted residual. The inverted residual takes the linear

bottleneck layer and uses that layer as an expansion layer thus expanding the filters

at the begining of each block as seen in Figure 4. The filters of each block can be

reduced in each subsequent convolution layer in such a manner as to make the design

extremely memory efficient, and also perform well experimentally[28].

DW Sep Conv
3x3

576 filters

Convolution
1x1

576 filters

+

Linear
Convolution

1x1 
96 filters

Convolution
1x1

96 filters

ReLU

ReLU

Linear

Figure 4. The MobileNet V2 inverted residual with linear bottleneck pulls the bot-
tleneck layer (one that is designed to reduce filters) to the outside of the convolution
layers. the linear activation of the bottleneck layers aids the network in retaining
linearities because they are residually connected through non-linear layers.

2.7.3 Inception V3

Inception was first presented as GoogLeNet in [36], as an architecture designed to

perform even with hardware constraints [67]. The design was first presented in 2014,

when such networks as VGGNet, which had three-times the parameters as AlexNet,

displayed performance exceeding AlexNet[67]. GoogLeNet, in response, produced

similar results as VGGNet with a twelve-times reduction in size from AlexNet[67].
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The benefits that Inception provided were through a directed acyclic graph struc-

ture. Instead of performing operations linearly and adding additional parameters

and complexity, Inception would parallelize the operations and perform convolutions

and batch normalizations in parallel then concatenate the outputs.

Inception V3 went a step further and reduced the larger 5x5 kernel convolutions

to two 3x3 kernel convolutions in series. This saved significant processing resources

and still allowed the network to capture some of the advanced dependencies that a

5x5 convolution would capture. The new modifications also established a methodol-

ogy to reduce grid size, while expanding the filter banks. This allows for additional

complexity while reducing computation time. Further developments reducing convo-

lution computations in the inception layers included those which alternated between

1xn layers and nx1. [67] selected n = 7 for these layers, and in later layers the second

3x3 convolutions were replaced with parallel 1x3 and 3x1 kernel convolution layers, as

seen in Figure 5. Inception V3 utilized batch normalization as a regularizer for con-

volution layers, and had a customized regularization scheme through label smoothing

on the classifier level.

2.7.4 ResNet

ResNet, presented in [37], addressed the issues of vanishing gradients. In deep

CNNs the weight updates can be disproportionately updated in the latter layers,

leaving the early layers untrained. Deeper networks begin to degrade as the depth

increase which causes accuracy to saturate[37]. A sweet spot appears, where the

depth and training are both optimized, yet this limits network complexity. The

solution presented by [37] includes residual connections as shown in Figure 6.

The hypotheses of [37] is that it is easier to optimize the residual mapping than

the original non mapped network. This mapping proved to be successful as the perfor-
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mance of the network derrived from this theory received first place in the ImageNet

competition in 2015. Another benefit to this design is that it can still be trained

through standard optimization techniques and implemented with standard CNN li-

braries without modification. The authors in [37] used Batch Normalization (BN) in

between the convolutional layer and the activation, along with the weight initializa-

tion techniques described in [21].

2.7.5 InceptionResNet

The excellent performance of ResNet and Inception gave the authors in [30] the

idea of putting the two technologies together. In many classification networks the

earlier layers focus on shrinking the image filter size, and this network begins with

the same intent. As seen in Figure 7, the input width and height is halved in the

first convolution, but the depth is increased from three colors to 32 filters. To aid the

network in retaining information in size reductions, the InceptionResNet v2 utilizes

a methodology of concatenating a max pool and convolution, as seen in Figure 7.

This was done to aid the network in retaining information that might be useful in

classification by including additional convolution and max pooling filters, yet reduce

the filter shape to allow quicker processing.

The InceptionResNet pulls a lot of tricks learned from earlier architecture devel-

opers. It includes the Inception and ResNet architecture traits discussed earlier, but

it also brings aspects used in mobileNet V2, namely linear activation layers as seen in

Figure 8. Figure 9 relates the various blocks explained inf Figures 7 and 8. Inception-

ResNet V2 utilizes the same padding on each of the block layers, thus allowing the

network to be easily adjustable for different image sizes, which allows concatenation

and adding residuals without layer scaling. The total filters increases from Blocks

A to Blocks C. Block A begins with 32 to 64 for each of the convolution layers,
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and the linear activated convolution layer also works as an expansion layer after the

concatenation of the earlier layers with 384 filters. This layer runs five times with

the addition of residuals for each layer. Blocks B and C work similarly to A with

an increase in filters where B runs 128 to 192 filters with a linear expansion layer of

1154, and Block C has 192 to 256 with a linear expansion of 2048 filters.

The authors in [30] found that deep networks can be trained without residual

connections, but residual connections improved the training speed greatly. To reduce

network over-fitting a 0.2 dropout was used after the global average pooling layer.

To allow the network to be trained on a single GPU, batch-normalization was not

used on the summation layers. Removing summations’ batch-normalization allowed

an increase of inception blocks with the saved processing capabilities. The authors

in [30] found that over 1000 filters in residual layers began to develop instabilities in

the network, and these results were similar to what was noted in [37]. The authors in

[30] developed three networks: InceptionResNet V1, V2, and Inception V4. Inception

V4 and InceptionResNet V2 both acheived best-ever performance on the Imagenet

classification dataset. Finally an ensemble network (where multiple networks inde-

pendently run and results are connected) was performed with one Inception V4 and

three InceptionResNet V2 which achieved 3.08% top-5 error.

2.7.6 Xception

The basis of the Xception design is inspired by the Inception architecture[76]. The

authors of [76] argues that an Inception module performs similar to a traditional con-

volution and depth-wise separable convolution hybrid. With the success of depth-wise

separable convolution in the mobileNet[28] architectures and the relative lightness

compared to traditional convolution, the authors of [76] replaced all convolution layers

with depth-wise separable convolutions. As seen in Figure 10, the Xception network
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appears to more closely resemble the ResNet[37] network than the Inception[67], but

because of the depth-wise separable layers the actual functionality is more of a hybrid

between the two. Xception is much smaller than the behemoth InceptionResNet[30]

and is approximately the size of Inception V3[67] and ResNet50[37]. Benchmark per-

formance on the ImageNet dataset Xception achieved a .945 accuracy compared to

.941, and .933 to Inception V3 and ResNet-152 respectively[76]. While the Xception

advancement seems only incremental, it does portray the understanding that different

linear modules with residuals can operate similar to directed acyclic ones.

2.7.7 DenseNet

What if every convolutional layer in your network had access to the outputs from

every previous layer? The authors in [31] decided to do just that. Since the network

did not need to relearn redundant feature maps, the authors in [31] argues that

the network requires fewer parameters than traditional convolutional networks. A

primary difference from DenseNet architecture and ResNet[37], is DenseNet utilizes a

concatenation of the previous input with the output of the current layer as opposed to

adding the various layers. DenseNet utilizes what the authors in [31] calls a composite

function containing batch normalization and ReLU after a 3 × 3 convolution layer.

The output of the composite function is concatenated with the input then passed

to the next composite function as seen in Figure 11. The composite function begins

with a bottleneck 1× 1 convolution layer with 128 filters. This is done to reduce the

input feature-maps and make the larger convolution more efficient[31]. This is again

followed by a batch normalization and a ReLU activation with the 3× 3 convolution

layer containing only 32 filters. because of the filter concatenation across the network

as seen in Figure 11, each composite function needs to only perform a small piece[31].

The Network performs a specific amount of composite functions in a dense block
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then uses a transition layer to compress the network. This compression begins with a

1× 1 convolution to reduce the filter dimensionality, then a 2× 2 average pool with a

stride of two to halve the output size. The performance of DenseNet on the ImageNet

dataset was competitive with the other leading networks with a top-5 accuracy of .947

with a multi-crop testing and .939 without[31]. The DenseNet architecture provides

an effective way to make each layer in a CNN more efficient and applicable to later

convolutional layers and the dense classification layer.
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Figure 5. Inception Modules. Top left is the original Inception module. Top right has
the 5x5 convolution replaced with two 3x3 convolutions. Bottom left is a middle layer
where n = 7, used to reduce computational complexity. Bottom right is a lower layer
used to reduce computations of 3x3 convolution.
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Figure 6. An example of a residual connection. Earlier layers are added to the results
of latter layers.
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Figure 7. The introduction layers to the Inception ResNet v2. Each convolutional and
pooling layer states the kernel size on the top row, the filters and stride on the second,
and the padding, either same padding (which retains original shape), or valid padding,
which reduces it according to the convolution/pooling output. The text underneath
each box is the output size based with relation to the input.
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Figure 8. Modules used in InceptionResNet V2. Reduction A and B are used after
blocks A and B respectively, and are used to reduce network dimensionality. Each
block is tailored for its location in the network.
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Figure 9. Architecture diagram for Inception-ResNet V2. Blocks based on figure 8 and
figure 7
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is the implementation, and the bottom displays the composite function’s connectivity.

45



III. Methodology

This chapter discusses the techniques and methods used for the experiments in this

study. It is composed of five sections: Dataset 3.1, System Architecture 3.2, Hyper-

parameter Comparison 3.3, Convolutional Neural Network (CNN) Model Architecture

Comparison 3.4, and Custom Loss Development 1.2. The dataset section covers the

in-depth origin and formatting of the satellite images to represent an appropriate

aerial dataset. Section 3.1 also discusses dataset formatting techniques for the various

convolutional neural networks (CNNs). System Architecture details the programming

structures, the machine learning architectures, and CNN designs specific to this thesis.

The Hyper-parameter Comparison provides the procedure for comparing nine hyper-

parameters. CNN Model Architecture Comparison in section 3.4 describes the process

for comparing seven innovative CNN models. Finally, Custom Loss Development,

section 1.2, discusses a loss specifically designed to integrate the results of a network

into an algorithm with Inertial Measurement Unit (IMU) data to provide a more

accurate location.

3.1 Dataset

The dataset for this project is built from satellite imagery from multiple seasons

and viewing angles. The dataset covers the Dayton, OH area, and is composed of 676

very high resolution satellite images for the training set and 112 for the test set. The

images are processed into smaller sizes designed to represent aerial photographs and to

be small enough to process adequately in a deep CNN. Each sample image is created

using satellite imagery by modeling the view as seen from an aircraft at a specific

altitude and orientation. The location coordinates for the center-point of each sample

image are localized in a navigation North East Down (NED) coordinate system.
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Altitude ranges are based off the image size and area. The following subsections

describe the process that was created to take large, raw satellite images and create

small sample images that appear similar to how an aircraft would view the scene.

3.1.1 Satellite Images
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Figure 12. Imagery from the training dataset. Each selected image is from a different
satellite. Image 1 is the smallest image in the training dataset and was taken April
2016, image 2 was taken July 2016. Image 3 is the largest image in the dataset and
was taken October 2016. The coordinates of the corners are indicated in WGS84.

47



The dataset used for this project contains spatially-organized raw satellite images

that cover 57 total square miles of the area surrounding Dayton, Ohio; 8.08 miles east

to west and 7.04 miles north to south. The data was received through a partnership

with Air Force Research Laboratory (AFRL), and is sourced from satellite images

through AFRL’s relationship with Planet Labs Inc. The average raw image size is

139 million pixels, with the largest at 185 million and the smallest at 39 million pixels.

The raw images are original footage from various satellites managed by Planet Labs

Inc. over the focus area. A sample of the raw images is displayed in Figure 12.

Each image has the WGS84 coordinates of its corners stored in a corresponding .json

file. Most of Planet Labs Inc’s satellites have a low earth, polar or nearly polar, sun

synchronous orbit[39] which means that the satellite always has sunlight. On the

other hand this causes a major shortcoming, a lack of night images. Since test flights

designed to accompany this dataset were intended for day time, the data shortcomings

were accepted, but additional work is needed for real world viability. Due to the nearly

polar orbits, the satellite images have a rotation with respect to North, as seen in

Figure 12.

3.1.2 Location Formatting

The area of interest has a boundary that is a nearly square polygon of Dayton,

Ohio. The first step in the processing chain to create sample images is to pass each

satellite’s boundary coordinates through a geometry based identifier to determine if

any portion of the raw image’s footprint is within the Dayton bounding box. Only

satellite images that contain areas inside the Dayton bounding box are included in

the dataset for further processing.

A local navigation coordinate system is established based on the Dayton bounding

box boundaries. The center of the bounding box is used for the reference point for the
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coordinate system as discussed in Section 2.2.3. Conversion matrices are established

to convert the bounding box from WGS84 to Earth Centered Earth Fixed (ECEF)

then, finally, to the localized NED, as described in Section 2.2. The satellite image

bounding box coordinates are also converted to the localized NED coordinate system.

3.1.3 Image Formatting

The next step is to reformat the raw satellite images that contain sections of the

Dayton bounding box into a dataset relating to the problem of visual location iden-

tification of an aircraft. The benchmark CNN architectures discussed in Section 2.7

are optimized for image sizes of approximately 224× 224× 3 to around 250× 250× 3

pixels[28, 67, 37, 30, 76, 31]. In an effort to study the performance of benchmark

architectures, selecting a compatible image size is essential. A trimmed image size of

224 × 224 × 3 from these specific satellite images produces an image approximately

700 meters from edge to edge. One popular small Unmanned Aerial Vehicle (UAV)

camera contains an angular field of view of 94◦[79]. Equation 9 can be used to de-

termine the simulated aircraft’s altitude (working distance), given the width of the

image and the angular field of view of a lens.

WorkingDistance =
HorizontalFOV

tan AngularFOV
2

(9)

The minimum altitude would be 652 meters or 2100 feet. A camera with an

angular field of view of 140◦ would decrease the minimum altitude to a more usable

254 meters or 833 feet. Camera lens zoom and cropping could be utilized for higher

altitudes.

The boundaries explained in Section 3.1.2 were used to determine the satellite

photographs that contain the bounding box. Then portions of each raw image that

were within the bounding box were extracted to be further subdivided into image
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samples. A circular radius was used to subdivide the photograph into smaller seg-

ments. Then, a 224 × 224 × 3 cutout was taken at a randomized rotation centered

within the circle. The whole process is described in Figure 13. Insead of creating and

storing all the raw satellite subsample images, the algorithm saves the directions to

cut each sample and returns that list to generate only the samples needed. The list of

samples was randomly shuffled and a dataset of 100,000 sampled images was returned

for the training dataset with a corresponding list of the centerpoint of each sample in

NED coordinates. The images and the centerpoint coordinates were returned as the

input and output for the CNNs.
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Figure 13. The top left is the original image and falls completely within the Dayton,
Ohio bounding box. The top right image has been cut up into 253 sections with
a random rotation applied to each section. The bottom image is the output of the
process: a sample image with center-point coordinates, which corresponds to one of
the small squares in the top right image.
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3.1.4 Additional Training Enhancements

Since the goal of this research is to compare various training and performance

characteristics of CNNs, it was determined to minimize variability by building a

common training and test set. 100,000 input images with their corresponding location

coordinate labels were established for the training set. The testing dataset contained

20,000 images and coordinate lables. The network will be trained each epoch on

90,000 observations, and validated with 10,000 observations. The testing dataset

contains 20,000 images from a separate set of satellite images.

A dataset that provides a high amount of training set variability would be bet-

ter for training, but training set variability may also present abnormalities in net-

work learning, causing some networks to learn at rates that are different from others.

Therefore, to control variability, additional training methodologies to better train the

networks were not implemented. To aid in developing a robustly trained network

for future efforts for the aerial visual localization problem, methods such as overlap-

ping circle radius’s, multiple orientations of images, randomized datasets within the

training process, and various skew or lighting distortions should be implemented.

3.2 System Architecture

In this section the programming language, machine learning infrastructure, hard-

ware, and CNN design is discussed. The Python language was used with multiple

specialized packages applying specifically to this dataset. Keras deep learning API,

with Tensorflow backend was used to develop the CNN framework. Government

Amazon Web Services (AWS) instances was used for computation because of their

incorporation of multiple Graphics Processing Units (GPUs). The network design fo-

cuses on building a consistant CNN infrastructure to be modified to compare various

parameters.
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3.2.1 Programing Infrastructure

The language for this study is Python version 3.6. Python is an open-source, high

level object-oriented programming language. There is a large and expanding library of

packages to aid in programming[80]. Python is the most popular programing language

for machine learning[81, 76]. This language was selected primarily for its ease of use

and its compatibility with the Keras framework[76]. Because of this, there is a large

selection of packages that have been previously created to aid in this specific task.

The algorithms for this thesis utilize standard and specialized Python packages

for various tasks. Some of the specialized packages and modules include mercantile,

which returns bounding coordinates and quadkey (grid location based on zoom) con-

versions. Shapely is used to find bound interactions between the satellite images,

the Dayton bounding box, and the individual sub-images. Affine is used to man-

age satellite affine transformation matrices, and Pyproj utilizes these tranformations

along with the coordinate reference system to return accurate location information

within the image. Autonomy and Navigation Technology (ANT) Center and AFRL

programming utilities were used to aid in coordinate conversions and data processing.

There are also many common Python libraries used such as numpy, glob, h5py and

many more which are widely used and documented across the Python community.

3.2.2 Machine Learning Platforms

Keras version 2.2.2 was selected as the framework to develop the CNNs. Keras

has recently been adopted by TensorFlow as the TensorFlow’s high-level API[76].

TensorFlow version 1.10.0 was utilized as the backend engine to develop and run

the neural net because it is the largest actively developed backend, and is the most

used in the machine learning community[76, 82]. The large community base affords

additional benefits in cross collaboration on forums and community channels to aid
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in development.

Keras can also be utilized to run on different backends if another infrastructure

is required. Keras was developed to be a rapid prototype environment; meaning that

with minimal coding fundamental model changes can be implemented[76]. Rapid

protoyping is useful, as this study requires multiple changes to analyze various CNN

architecture designs.

3.2.3 AWS Instances

Training deep CNN architectures require extensive processing power. As discussed

in Section 2.7.1, modern advances in GPU processing have afforded deeper, more so-

phisticated networks. Government AWS provides advanced cloud services with access

to instances with multiple GPUs. Two AWS instances were utilized to provide the

capacity to train two networks at the same time. The first instance was a p2.8xlarge

which supplied eight NVIDIA K80 GPUs. This instance provided 64Gb GPU mem-

ory with 32 virtual Central Processing Unit (CPU)s and 488Gb of RAM. The second

was a p3.8xlarge instance that utilized 4 of NVIDIA’s advanced V100 Tensor core

GPUs which provides 128GB of GPU memory also with 32 virtual CPUs and 244Gb

of RAM. Both operating systems utilized a Linux operation system version 4.4.0-140-

generic x86 64. Both systems run NVIDIA CUDA toolkit which unleashes the full

power of the GPU CUDA cores and in the NVIDIA V100 the tensor cores as well. Be-

cause the NVIDIA V100 is specially designed for complex Artificial Intelligence (AI)

problems, the p3.8xlarge outperformed the p2.8xlarge in training time and was able

to train deeper networks that the p2.8xlarge could not train.
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3.2.4 Network Design

This study focuses on network architecture and hyperparameter performance

which requires a root setup that minimizes variability but allow the different ap-

proaches described in Chapter 2 to be swapped in and out. Keras functional API was

utilized to build the network, which is illustrated in Figure 14. The input format is a

224×224×3 image. The input leads into one of the benchmark deep learning models

discussed in Section 2.7. The model is selected from Keras’s pre-built applications.

The models available for selection are: Xception, VGG16, VGG19, ResNet50, Incep-

tionResNetV2, MobileNet, MobileNetV2, DenseNet121, DenseNet169, DenseNet201,

NASNetMobile, and NASNetLarge. The finishing layers from the benchmark model

were removed to lead into one of the finishing layers discussed in Section 2.6: flatten,

global average pooling, or global max pooling. To increase connectivity, an additional

dense layer with 1024 neurons and a ReLU activation was implemented post finishing

layer and prior to the output layer. The ouput layer was a two neuron (North, East)

dense layer with a linear activation.

The weights will be initialized differently throughout the study with either the

pretrained imagenet weights from the Keras application, or one of the weight initial-

izations discussed in 2.4: Glorot normal, Glorot uniform, or orthogonal.

After the model was created, a loop went through each layer and updated the

weights of convolution and dense layers to the correct weight initializations. Before

compilation the model was optimized using the Keras multi GPU model utility. The

model is optimized for eight GPUs when run on the p2.8xlarge AWS instance and

four on the p3.8xlarge AWS instance. The multi GPU model utility replicates the

model on the different GPUs, divides the inputs into sub-batches, executes the models

on their dedicated GPU, and then concatenates the results on the CPU into one big

batch. Because the GPU technology and processing is different there is a potential
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for some discrepancy between instances.

Mean squared error was utilized for the loss to emphasize the error when further

from the target. Mean absolute error is used as a training metric for better readability

of the location error. Networks were trained using one of the optimizers discussed in

Section 2.5: Adam, Adadelta, or RMS Prop. The learning rate is 0.001 for Adam

and RMS Prop. This rate was selected because it is small enough to not dramatically

over-step minimums, and not too small that training would be lengthy and difficult.

Adadelta learning rate was set to 1.0 because the optimizer continually updates the

learning rate as training progresses. Weight decay is not used in either of the studies,

but would be beneficial for additional training techniques if used with Adam and

RMS Prop optimizers.

3.3 Hyper-parameter Comparison

The hyper-parameter comparison addresses three specific hyper-parameters to de-

termine those that will perform better with this dataset. The parameters are network

weight intializations, optimizer functions, and finishing layers. There have been signif-

icant advances in these hyper-parameters, and this section discusses the methodology

to test the performance of certain parameters on the aerial visual localization dataset.

A default configuration was established, and each hyper-parameter was varied and

then compared to the base configuration. The Inception V3 model is the base CNN

model for this study, and each model was trained for 50 epochs. The best performing

hyper-parameters is then combined and trained for 150 epochs along with the default

model. Each network’s training error rate is then analyzed, and after training, its

performance was evaluated on the testing dataset.
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Input 224 x 224 x 3

Model: Inception V3*

Xception*

Dense Layer
1024 neurons

ReLU activation

Finishing Layer: 
Global Average Pooling**

Weights Initialization****
Glorot Uniform

Orthogonal
Glorot Normal

Weights Initialization****

MobileNet*ResNet*

Inception 
ResNet*

Global Max Pooling**

Flatten**

Output:
Dense Layer

2 neurons: North, East
Linear activation

Weights Initialization****

Optimizer***
 Adadelta

Adam
RMS Prop

Alternate Blocks for 
Model on the Left 

Figure 14. The variables are annotated with a*. The defaults for the hyperparameter
comparison are: Inception V3, global average pooling, Adadelta optimizer, and Glorot
Normal weight initializations.

3.3.1 Parameters to review

There is extensive customization available for CNNs, especially when it comes to

hyper-parameters. For the aerial visual localization task, this research focuses on

three hyper-parameters: initialization, optimization, and finishing layers. Figure 15

graphically represents the relationship between weight initializers, optimizers and

finishing layers. While Keras application models have pretrained weight sets, when

designing custom networks or customizing networks to specific problems, the right

initialization can save training time as discussed in Section 2.4. This research will

compare three weight initializers: Orthogonal, Glorot Normal, and Glorot Uniform.
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Optimizers, as discussed in Section 2.5, have come a long way to advance CNNs

into the powerhouse they are today. The development of additional optimizers has also

created more choices, and the three to compare in this study are RMS prop, Adam,

and Adadelta. Finally, while classification networks enjoy global average pooling as

the finishing layer[70, 26, 27], aerial visual localization is a regression problem. To

determine the correct finishing layer, flatten, global average pooling, and global max

pooling were reviewed.

Convolution Layer

20

20

3

3x3x3

18

251

8

18

weighted
kernels 3x3x3

Optimizer 

Flatten: 2592x1(18x18x8)
Global Average/Max Pooling: 8x1 Finishing Layer

Dense Layer

Activation Function

16 total weights: Global Pooling
5185 total weights: Flatten

216 total weights (3x3x3x8) 

Updates weights
between batches

through gradient descent

Figure 15. This very simple CNN illustrates the input’s relationship between the weight
initialization, optimizers and finishing layers. The convolution kernel and dense neuron
weights are initialized prior to training. The optimizer updates the weights as training
occurs. The finishing layer not only changes the dimensionality in preparation for the
output, but affects the balance between network size and information preservation.
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3.3.2 Default Configuration

An exhaustive study of the interactions between each of the initializers, optimizers

and finishing layers could be beneficial, but due to the training time and instance

costs, this study would exceed alloted time and resources. A baseline configuration

has been established, and one hyper-parameter is to be varied. The baseline setup

includes a Glorot uniform kernel initializer for the convolutional and dense layers.

The default optimizer is Adadelta. The default finishing layer, prior to the fully

connected layers, is global average pooling.

The InceptionV3 was selected from the prebuilt Keras model applications for all

the hyper-parameter comparison tests. The InceptionsV3 architecture was selected

due to the architecture reaching state of the art performance with less computational

complexity than VGGNet[67]. The use of directed acyclic graphs of layers allows

the network to add model complexity to learn spatial and channel-wise features more

efficiently than learning them jointly[83]. Furthermore, since InceptionV3 has demon-

strated high quality results with low receptive fields, and the images contained in this

dataset having very small characteristic features, this network appeared adequate to

represent the dataset[67].

3.3.3 Comparison Methodology

Each model was trained for 50 epochs. This amount of training will not produce

a fully trained network, but 50 epochs provides adequate training for the network

to provide adequate results, illustrate training trends, and validate if the CNN is

learning. 50 epochs is also short enough to allow modifications in experimental de-

sign without losing months in training time. The Adadelta optimizer could be at a

disadvantage with only 50 epochs, since it begins with a poor learning rated and the

gradient descent scheme updates the learning rate while training.
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The top performing hyper-parameters are combined for a super model and trained

to evaluate if a combination of them can improve training and performance. Finally

this supermodel and the default configuration was trained for 150 epochs and evalu-

ated based on performance differences. This will determine if Adadelta’s performance

improves with additional epochs (because it is the default optimizer), and if the ad-

vantages of picking the high performers will translate into better performing networks.

The training was measured in two ways: how well the network learns the training

dataset, and how well can it generalize the information measured through validation

during training. The training rates for each of the initializers, optimizers, and finishing

layers were compared with one another in training and validation performance. While

final performance is the highest priority, high volatility in the validation set could

indicate performance that might not be repeatable. Early in training, a network

usually has little reliability, so an emphasis will be placed on middle and later training.

Training advantages can lead to better CNNs in less time, and model performance

is essential. Weight initializations have greater importance during earlier training

epochs, because the optimizer’s feedback overwrites the initializations though training

as the network becomes fully trained. Finishing layers could have applicability to

both training and performance, and optimizers definitely affect both training and

performance.

To measure performance, each of the networks were loaded and their performance

evaluated with the test dataset discussed in Section 3.1. The Mean absolute errors of

the test set are compared across the various models. The geographic positions of the

best and worst errors were analyzed to see patterns and benefits of some networks over

others. Finally, images of the top network errors are analyzed visually to determine

if image conditions such as cloud cover etc. could be affecting the network.
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3.4 CNN Model Architecture Comparison

The model architecture comparison takes industry leading networks and trains

them on the aerial visual localization dataset to determine the best performing net-

works. Each network brings specific advantages in design. Each CNN will be trained

with both untrained weight initializations and weights pretrained on the Imagenet[19]

dataset. The architectures will be analyzed through their performance, training and

network shortcomings.

3.4.1 Models to Review

There are some very innovative CNN model architectures discussed in Section 2.7.

Each of these models brings specific advances to the table in terms of problem solving.

While there are winners in performance on the Imagenet[19] dataset, this application

is not a classification problem on that dataset. The question is this: which model is

the best at performing the task of visual aerial localization?

MobileNet V2 has an advantage in being much smaller than all of the others, and

if it’s performance is comparable to its peers, then it would be an excellent choice

especially for smaller UAVs. Inception V3 is much larger than mobileNet V2, but

with its directed acyclic graphs, it could perform well on this dataset. ResNet 50 is

comparable to Inception V3 in network size, and residual connections could provide an

advantage. Xception is slightly smaller, yet comparable in size to Inception V3, and

its dependence on depth-wise separable convolution could be an advantage. DenseNet

201 is slightly smaller than Xception and having connections throughout the network

could provide excellent performance on this dataset.
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3.4.2 Default Settings

The network design described in Section 3.2.4 was used for this comparison. The

optimizers and finishing layers remained static. The Adam optimizer and flatten fin-

ishing layer was used to train all of the networks. The optimizer and finishing layer

were both selected because their performance during the hyper-parameter compari-

son indicated they perform well on this dataset. Government AWS p2.8xlarge and

p3.8xlarge instances were used, so various networks were optimized for either four or

eight GPUs as discussed in Section 3.2.3. This means that different networks were

trained on different computers.

3.4.3 Model Comparison

To understand the difference in the network performance each CNN was trained

for 150 epochs. This amount of training provided sufficient time for networks to

overcome instability and demonstrate their ability to learn the information. Each

network will be trained two times one with the pretrained imagenet weights, and one

with a Glorot Uniform weight initialization. This is done to demonstrate if there is

an advantage of utilizing pretrained networks as well as the ability to compare the

networks with custom designs that will not have access to pretrained weights.

Each model was compared during training by how well the network learns the

dataset, and how well the network generalizes the data. The loss function for learning

was mean squared error. Mean Absolute Error (MAE) is used as a training and vali-

dation metric. The rates are compared across models by category, and with/without

imagenet weights. The difference in each model’s performance with imagenet weights

vs untrained weights was analyzed. Validation volatility was also be examined.

Network performance was measured based on each network’s performance on the

test dataset discussed in Section 3.1. The mean absolute error is compared across
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each of the networks for both pretrained, and untrained weight initializations. Geo-

graphic positions of best and worst errors was illustrated along with error locations to

determine trends in dataset errors and variations between where the networks excel.

High and low error images were analyzed to visually assess network performance on

the dataset.

3.5 Summary

This chapter discussed the techniques and methods used for the experiments in

this study. The dataset section covers the in-depth origin and formatting of the

satellite images to represent an appropriate aerial dataset. It also discusses dataset

formatting techniques for the various CNNs. System Architecture details the pro-

gramming structures, the machine learning architectures, and CNN designs specific

to this thesis. The Hyper-parameter Comparison provided the procedure for com-

paring nine hyper-parameters. CNN Model Architecture Comparison described the

process for comparing seven innovative CNN models. Finally, Custom Loss Develop-

ment discussed a loss specifically designed to integrate the results of a network into

an algorithm with IMU data to provide a more accurate location.
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IV. Results

This chapter discusses the training and testing results for the study outlined in

Chapter III. Section 4.1 discusses essential details regarding the dataset, and training

requirements to complete the study. The Hyper-parameter Comparison discussed in

Section 4.2 had diverse training and testing performance. The three hyper-parameters

were optimizers, finishing layers, and weight initializers. The convolutional neural

network (CNN) Model Comparison in Section 4.3 analyzed five models: MobileNet

V2, Inception V3, ResNet 50, Xception, and DenseNet 201.

4.1 Resources

Even with the multiple Graphics Processing Units (GPUs) supplied in both the

p2.8xlarge and p3.8xlarge instances, training CNNs was a lengthy process. Running

multiple processes while training a CNN model would drain resources and stall or

cancel the training. Since many of the models took more than 20 hours to train,

processing only one model at a time per instance became a limiting factor.

4.1.1 Dataset

The dataset was built using a collection of satellite images that encompassed in

some fashion the bounding area over Dayton Ohio. There are 100,000 images in the

training dataset, as described in Section 3.1. The training dataset location coordinates

are shown in Figure 16. The distribution is fairly balanced, but the amount of images

with coordinates in the corners of the Dayton bounding box are significantly higher

than those in the center. This imbalance of data could skew the training by over

emphasizing corners vs the area as a whole.

The testing dataset, also described in Section 3.1, contains 20,000 images. The
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Figure 16. Both charts are based off the 100,000 locations of the dataset points in the
training dataset. The histogram on the left displays the density of images for every
2002 meter block of the Dayton bounding box. The blue dots on the right display the
center locations of each image in the dataset against a white background.

testing dataset locations are similar to the training dataset with respect to their

location density. This phenomenon is understandable because both datasets come

from Planet Labs Inc. satellites with an orbit of the Dayton Ohio area. Because the

image location distribution is similar in both datasets, future development in dataset

location distribution could provide a more robust testing and training environment.
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Figure 17. Both charts are based off the 20,000 locations of the dataset points in the
testing dataset. The histogram on the left displays the density of images for every 2002

meter block of the Dayton bounding box. The blue dots on the right display the center
locations of each image in the test dataset against a white background.
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4.1.2 Equipment

Training time was a significant limiting factor. Even with the significant pro-

cessing power of the Amazon Web Services (AWS) instances, as described in Sec-

tion 3.2, it took approximately 350 to 2000 seconds per epoch to train an epoch on

the p3.8xlarge instance. Training time took approximately 500 to 3500 seconds per

epoch on p2.8xlarge instance. Training the default model in the hyper-parameter

comparison for 150 epochs on the p3.8xlarge instance took 16 hours. To train the

super-model in the hyper-parameter comparison for 150 epochs on the same instance

took 21 hours. The increased training time was due to the additional parameters of

the flattening layer vs the global average pooling finishing layer.

The models in the CNN comparison varied significantly in the required training

time. Due to the various network sizes and capabilities of the AWS instances, the

batch size required adjusting depending on the instance and the model size. The

batch size was initially set, then taylored if the instance ran out of memory during

training. Any background processes also affected memory usage, so network size was

not the only factor in determining batch size. The list of model parameter size and the

batch size is listed in Table 2. The Inception-ResNet had significant learning issues

when trained on the p2.8xlarge, which resulted in multiple out of memory errors and

failure of the network to learn. When ran on the p3.8xlarge instance, no similar issues

were observed.

4.2 Hyper-parameter Analysis

The performance during training and testing was diverse. The studied hyper-

parameters were optimizers, finishing layers, and weight initializations. The optimiz-

ers analyzed were Adadelta, Adam and RMS prop. The finishing layers were global

average pooling, flatten and global max pooling. The weight initializations were Glo-
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Model Parameters and Batch Size
Model Type Total

Parameters
Trainable
Parameters

Training
Batch Size

AWS
Instance

Hyper-parameter
Default

23,903,010 23,868,578 128 p3.8xlarge

Hyper-parameter
Super-model

74,234,658 74,200,226 64 p3.8xlarge

Inception V3 74,234,658 74,200,226 64 p2.8xlarge
DenseNet 201 114,662,978 114,433,922 64 p3.8xlarge
MobileNet V2 66,486,338 66,452,226 64 p2.8xlarge
ResNet 50 126,351,234 126,298,114 64 p2.8xlarge
Inception-ResNet V2 93,661,410 93,600,866 32 p3.8xlarge
Xception 123,625,002 123,570,474 64 p3.8xlarge

Table 1. This table illustrates the batch size in relationship to the trainable parameters
and AWS Instance.

rot normal, orthogonal, and Glorot uniform. The default model was comprised of an

Adadelta optimizer, a global average pooling finishing layer, and a Glorot uniform

weight initialization.

All hyper-parameters were varied one at a time and tested against their respec-

tive classes (optimizers, finishing layers, and weight initializations). Each model was

trained for 50 epochs. The best performance during training was observed in networks

containing the RMS prop optimizer, the flatten finishing layer, and orthogonal weight

initializer. This selection was combined to develop a super-model to be trained for

150 epochs and compared to the default model.

The performance of the hyper-parameter comparison on the test dataset did not

mirror the performance of the best hyper-parameters during training and validation

time. The performance of each model on the test set after 50 epochs of training

analyzed and discussed in detail in Section 4.2.2 below.

The supermodel outperformed the default model in the 150 epochs of training

and validation. The testing performance of the super-model was also a significant

improvement over the default model after being trained for 150 epochs.
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4.2.1 Training
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Figure 18. The charts on the top are training over the full 50 epochs, and the charts on
the bottom are a zoom of the epochs 30 to 50. The charts on the left are the training
errors of all three optimizers Adadelta, Adam, and RMS prop. The charts on the right
are the validation error rates for each epoch.

0 10 20 30 40 50
Epochs

0

500

1000

1500

2000

2500

M
AE

Optimizers Training and Validation Difference
Adadelta
Adam
RMSprop

Figure 19. This chart shows the validation error minus the training error per epoch
for the optimizers Adadelta, Adam, and RMS prop.
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Figure 20. This is a violin plot of the validation minus training data as displayed in
figure 19 for the optimizers Adadelta, Adam, and RMS prop.

Optimizers The three optimizers analyzed in the hyper-parameter study

were Adadelta (which was the default model), Adam, and Root Mean Squared (RMS)

propagation. All three optimizers performed similarly well with respect to the training

error as seen on the left hand side of Figure 18. The RMS prop training error was

lower in the earliest epochs, but was surpassed by Adadelta and Adam in later epochs.

Adadelta had a higher variability in the validation data in the earlier epochs. This is

expected because of Adadelta’s algorithm as discussed in Section 2.5.

The validation error minus the training error was used as a metric to analyze

the model’s ability to generalize the data learned through training. The charts of

this metric is displayed in Figures 19 and 20. The difference between the training

curve and the validation displays the network’s ability not just to memorize training

data, but to translate the data into learned patterns. Figure 19 shows the diffi-

culty the Adadelta model had in the earlier epochs to generalize the training data.

Adadelta had significanly higher variability and volatility earlier on, but toward the

later epochs the Adadelta model had less volatility than the Adam model. This pat-
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tern is displayed more succinctly in Figure 20. This violin plot displays Adadelta’s

95% confidence interval as the highest of the three, yet the interquartile range and

median are both less than the Adam model. The Adam model appears in Figure 19

to perform fairly well, but the violin plot reveals the lackluster performance of the

Adam model compared to the RMS prop model. RMS prop appears to perform ex-

tremely well in both Figures 19 and 20. The confidence interval and interquartile

range are tight and much smaller than the rest, portraying the ability to generalize

the information well with little volatility. The median error for RMS prop is slightly

higher than Adadelta, however considering all aspects, it appears that RMS prop

performed the best during the first 50 epochs of training when compared to the other

two optimizers Adadelta and Adam.

Finishing Layers The three finishing layers were global average pooling (the

default finishing layer), flatten, and global max pooling. All three models’ training

and validation error charts are in Figure 21. It is not surprising that global average

pooling had the best training error curve, with it’s popularity as a finishing layer,

as described in Section 2.6. The validation error did not appear to follow a similar

trajectory as the training error.

The validation error minus the training error metric in Figures 22 and 23 tell a

much different story about network generalization. The volatility of flatten finishing

layer is much less than that of global average pooling and global max pooling. Flatten

does add significant bulk in training parameters to the network, but it had the tightest

95% confidence interval and interquartile range. The validation errors were also on

average closer to the training errors than the global average and global max pooling.

Since flattening could add significant network size (depending on CNN output) as

compared to the other, a possibility for a lighter network could be to combine global

average and global max pooling. This combination would still be much lighter than
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Figure 21. The charts on the top are training over the full 50 epochs, and the charts
on the bottom are a zoom of the epochs 30 to 50. The charts on the left are the
training errors of all three finishing layers: global average pooling, flatten, and global
max pooling. The charts on the right are the validation error rates for each epoch.
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Figure 22. This chart shows the validation error minus the training error per epoch
for the finishing layers: global average pooling, flatten, and global max pooling.
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Figure 23. This is a violin plot of the validation minus training data as displayed
in Figure 22 for the finishing layers: global average pooling, flatten, and global max
pooling.

flatten, but could add additional value in feature detections. It is clear that flatten

outperformed both global average pooling and global max pooling for this comparison.

However, due to the additional overhead with a flattening finishing layer, performance

vs network size tradeoff must be considered for the application.

Weight Initializations The three weight initializers: Glorot Uniform, or-

thogonal, and Glorot normal had a fairly balanced training error rate. Glorot uniform

had a slightly better training error throughout the epochs as seen in Figure 24. Ana-

lyzing the validation error rates minus the training error in Figures 25 and 26, there is

a significant performance advantage of the orthogonal initialization over Glorot uni-

form. Glorot normal also performed better than Glorot uniform with a much tighter

95% confidence interval. Orthogonal is the clear winner, with the tightest interquar-

tile range and 95% confidence interval. This emphasizes the ability of orthogonal

weight initialization to generalize the data consistently through training.
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Figure 24. The charts on the top are training over the full 50 epochs, and the charts
on the bottom are a zoom of the data epochs 30 to 50. The charts on the left are
training errors for all three weight initializers: Glorot uniform, orthogonal, and Glorot
normal. The charts on the right are the validation error rates for each initializer over
the epochs.
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Figure 25. This chart shows the validation error minus the training error per epoch
for the weight initializers: Glorot uniform, orthogonal, and Glorot normal.
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Figure 26. This is a violin plot of the validation minus training data as displayed in
Figure 25 for the weight initializers: Glorot uniform, orthogonal, and Glorot normal.

Super Model All of the previous comparison networks were only trained

to 50 epochs. This level of training is insufficient to provide an adequate solution

for visual aerial navigation, as there is still room for additional training before over-

fitting. A super-model was devised based on the best performing hyper-parameters to

evaluate the benefit of those parameters with adequate training on the dataset. The

best performing hyper-parameters for the super model were: RMS prop optimizer,

flatten finishing layer, and orthogonal weight initializers. This model will be compared

with the default model which has an: Adadelta optimizer, global average pooling

finishing layer, and Glorot uniform initializer. The training and validation error can

be seen in Figure 27.

In Figure 27 the super-model outperformed the default model. The benefits of

the super-model’s hyper-parameters are apparent. In Figure 28 and 29 the valida-

tion error minus the training error displays the super-model’s ability to consistently

generalize the training data through validation better than the default model. From

the earliest epochs down to the last, the super-model reduces variability and volatil-
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Figure 27. The training and validation error for the default model and the super-
model. The charts on the top are training over the full 150 epochs, and the charts
on the bottom are a zoom of the data epochs 100 to 150. The left charts are training
errors, and the right are the validation error rates for both models over the epochs.
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Figure 28. This chart shows the validation error minus the training error per epoch
for the default model and the super-model.

ity. Figure 29 emphasizes the dramatic difference between the performance of the

two models during training. The 95% confidence interval and the interquartile range
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Figure 29. This is a violin plot of the validation minus training data as displayed in
Figure 28 for the default model and the super-model.

are significantly tighter containing lower maximums than the default model. These

results demonstrate that carefully selecting the appropriate hyper-parameters can

greatly affect the networks ability to generalize training data.

4.2.2 Testing

Testing occurred in two stages. Stage one is testing the hyper-parameter compar-

ison models trained over 50 epochs. Stage two is testing the super-model versus the

default model after 150 training epochs.

4.2.2.1 Hyper-parameter Testing

The hyper-parameter test results were typically not in-line with the best validation

results found in 4.2.1. Training each model in the hyper-parameter comparison for

50 epochs provided extensive data in determining patterns of success in training.

Conversely, it was not adequate to fully train the CNNs, as will be discussed below.

Figure 30 contains the results of the test set in a side by side comparison between
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Table 2. The default model is listed first with Adadelta optimizer, global average
pooling finishing layer and Glorot uniform weight initializations. The Adam and RMS
Prop were the additional optimizers that were varied. Flatten and Global Max Pooling
were the finishing layers, and Orthogonal and Glorot Normal were the additional weight
initializers that were tested.

Test Set Frobenius Norm Error after 50 Training Epochs (Meters)
Model Type Mean Error Median Max Error Min Error
Default Model 1129.582 883.531 12550.085 7.721
Adam 1049.041 722.754 11748.307 7.788
RMS Prop 1309.568 797.242 12146.415 1.392
Flatten 834.358 578.957 11807.755 4.608
Global Max Pooling 950.918 701.362 11887.215 5.414
Orthogonal 1168.798 730.651 11787.325 4.233
Glorot Normal 910.526 710.760 11074.459 4.989

Adadelta Adam RMSprop Global Average Flatten Global Max Glorot Uniform Orthogonal Glorot Normal
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Figure 30. This violin plot displays the RMS error results of the test dataset on all the
hyper-parameter comparison models. Each model was trained for 50 epochs.

all the hyper-parameters. It is observationally evident that there is a small level of

extreme outliers in every model compared. These extremes are shown in Table 2.

Each model has similar values for the maximum errors, but the mean errors are

diverse. The model run with a flatten finishing layer was the most successful on the

test dataset. The performance of the network with flattening was predicted based on

the performance during the training dataset. The other hyper-parameters that were

expected to perform the best were actually the worst performing on the test dataset.

RMS prop, which was the preferred optimizer, had the worst RMS mean test error

out of all the models, and the orthogonal weight initializer had the second worst RMS
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mean test error.
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Figure 31. This violin plot displays the RMS error results of the test dataset for the
Optimizer comparison models: Adadelta, Adam, and RMS prop. Each model was
trained for 50 epochs, and the worst 200 RMS errors were removed for readability.
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Figure 32. This scatter plot indicates the actual location of the 400 highest errors for
the optimizer models: Adadelta, Adam, and RMS prop.

Optimizers The extreme error values made it difficult to observe perfor-

mance advantages due to the skew in the charts. To enhance the readability, these

extremes were clipped in Figure 31. It is observed that the RMS prop’s predictions

had a much higher rate of error than the other two optimizers, even with the worst

200 errors removed in the figure. It is surprising to see that Adam turns up as the

best performer after the lackluster performance during training. This underlines the

notion that training errors are a poor prediction of actual model performance.
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Figure 33. This scatter plot indicates the actual location of the 400 lowest errors for
the optimizer models: Adadelta, Adam, and RMS prop.

What sheds further light on the performance of the three optimizers are the results

in Figures 32 and 33. Observing the highest error distribution of the three optimizers

illustrates that RMS Prop was extremely poor at classifying specific areas of data,

and the best classifications in Figure 33 also were geographically localized. The Adam

model had the most balanced distribution between the high errors and the low errors.

Adadelta also had some regions that performed better and worse. The highest errors

for the model using the Adam optimizer follow the dataset distribution described in

4.1.1. It appears that the Adam optimizer was the best at generalizing the training

data for testing.

Finishing Layers The performance of the finishing layer models: global

average pooling, flatten, and global max pooling, were similar to expected results.

Figure 34 contains the violin plot of the RMS error distribution for the three mod-

els. With the worst 200 errors removed to enhance readability, it is clear that the

model with the flatten finishing layer had an error distribution on the test set that

outperformed the other two finishing layers. It could be argued that the advantage

of the additional weights created by the flatten would aid to better generalization.

Recall that the flatten model has 74,200,226 trainable weights where the other two

have 23,868,578.
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Figure 34. This violin plot displays the RMS error results of the test dataset for the
finishing layer comparison models: global average pooling, flatten, and global max
pooling. Each model was trained for 50 epochs, and the worst 200 RMS errors were
removed for readability.
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Figure 35. This scatter plot indicates the actual location of the 400 highest errors for
the finishing layer models: global average pooling, flatten, and global max pooling.
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Figure 36. This scatter plot indicates the actual location of the 400 lowest errors for
the finishing layer models: global average pooling, flatten, and global max pooling.

The error distributions in Figure 35 depicts that the global average pooling model

had higher error rates in the west and south segments of the dataset. The error
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distributions for both global max pooling and flatten models did not appear region-

alized. The lowest errors, as seen in Figure 36, show the flatten model following a

pattern similar to the dataset distribution. The global average pooling and global

max pooling models appear to localize their best error rates to a specific location.

These results show that the flatten model has a better geographical distribution of

the area. This could also be due to the additional trainable parameters provided by

the flattening finishing layer.
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Figure 37. This violin plot displays the RMS error results of the test dataset for the
weight initializer comparison models: Glorot uniform, orthogonal, and Glorot normal.
Each model was trained for 50 epochs, and the worst 200 RMS errors were removed
for readability.
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Figure 38. This scatter plot indicates the actual location of the 400 highest errors for
the initializer models: Glorot uniform, orthogonal, Glorot normal.
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Figure 39. This scatter plot indicates the actual location of the 400 lowest errors for
the initializer models: Glorot uniform, orthogonal, Glorot normal.

Weight Initializations Figure 37 displays how well Glorot Normal model

performed on the test dataset compared to Glorot uniform and orthogonal. It was

surprising to see how poorly orthogonal performed, given the performance in training

and validation. The inability of the orthogonal network to generalize the dataset

is emphasized in the highest 400 error distribution in Figure 38. The majority of

the error comes from a small South-West segment of the bounding box. The best

performance for the orthogonal model in Figure 39 contained no values in that South-

West segment. Glorot Uniform also had highly regional error rates in both the worst

errors and the best errors. The CNN model with the best usage of the area, Glorot

normal, also had the best performance on the dataset.

Table 3. The default model is listed first with Adadelta optimizer, global average
pooling finishing layer and Glorot uniform weight initializations. The super-model had
RMS prop optimizer, flatten finishing layer, and orthogonal weight initializations.

Test Set Frobenius Norm Error after 150 Training Epochs (Meters)
Model Type Mean Error Median Max Error Min Error
Default Model 657.470 446.707 12076.074 2.892
Super Model 299.397 220.447 12413.668 0.844
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Figure 40. This violin plot displays the RMS error results of the test dataset for the
weight initializer comparison models: Glorot uniform, orthogonal, and Glorot normal.
Each model was trained for 50 epochs, and the worst 200 RMS errors were removed
for readability.

Figure 41. Images of the 50 highest test set errors for the default model(Adadelta opti-
mizer, global average pooling finishing layer, and Glorot uniform weight initialization)
after being trained for 150 epochs.

4.2.2.2 Super Model Testing

After training the default model (Adadelta, global average pooling, and Glorot

uniform) and the super-model (RMS prop, flatten, and orthogonal) for 150 epochs

it was evident that the super-model had superior validation performance throughout
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Figure 42. Images of the 50 highest test set errors for the super-model(RMS prop op-
timizer, flatten finishing layer, and orthogonal weight initialization) after being trained
for 150 epochs.

training. Similarly to the models trained for 50 epochs, the worst errors were in the

range of the earlier models, as seen in Table 3. The mean test set error is where the

super-model truly shined. The default model had RMS error rate of 657.5 meters,

where the super-model was at 299.4 meters. The super-model’s error rates are nearly

viable for practical application, whereas the default model is not. The errors are

visualized in the violin plot in Figure 40. The default model’s distribution is prone

to much higher errors than the super-model.

The images of the 50 highest errors for the two networks are displayed in Fig-

ures 41 and 42. Both figures exhibit the effect of cloud cover on the dataset. The

default model’s worst 50, in Figure 41, suggests that the network continues to have

difficulty with specific types of images, particularly in neighborhoods of dense build-

ings. Observing the difference between Figures 41 and 42 indicates that the default

model has classified unreadable images better than images with identifiable features.

The super-model has similar issues with misclassification, but at a lesser rate. Nine
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of the fifty images in Figure 42 are unreadable, and classification is impossible. There

are four additional images with heavy cloud cover where classification is difficult at

best. These issues indicate the real obstacles that occur in visual aerial localization.

4.3 CNN Model Architecture Comparison

The CNN model comparison analyzes the training and performance of five inno-

vative CNN architecture designs: MobileNet V2, Inception V3, ResNet 50, Xception,

and DenseNet 201. These five networks were trained twice for 150 epochs, first with

pretrained Imagenet weights, then with untrained Glorot uniform initializations.
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Figure 43. The training and validation error for models initialized with pretrained
Imagenet weights. The model architectures are MobileNet V2, Inception V3, ResNet,
Xception, and DenseNet 201. The charts on the top are training over the full 150
epochs, and the charts on the bottom are a zoom of the data epochs 100 to 150. The
left charts are training errors, and the right are the validation errors for both models
over the epochs.
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Figure 44. The training and validation error for models initialized with untrained
Glorot uniform initialization. The model architectures are MobileNet V2, Inception
V3, ResNet, Xception, and DenseNet 201. The charts on the top are training over the
full 150 epochs, and the charts on the bottom are a zoom of the data epochs 100 to
150. The left charts are training errors, and the right are the validation errors for both
models over the epochs.

4.3.1 Training

The training and validation comparison between the five models are found in

Figures 43 and 44. Figure 43 provides a side-by-side chart of the models trained

with Imagenet weights. The validation Mean Absolute Error (MAE) for every model

with the pretrained initialization is lower than the MAE of the super-model from

the hyper-parameter study after 150 epochs. Each model with pretrained Imagenet

initializations also outperformed the same model with untrained Glorot uniform ini-

tializations, see Figure 44. Imagenet classification is a significantly different problem

than aerial visual localization, but these pretrained weights outperform untrained
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Figure 45. Validation minus training error for models side by side initialized with
pretrained Imagenet weights and untrained weights (UW on the chart). The model
architectures are MobileNet V2, Inception V3, ResNet, Xception, and DenseNet 201.
Untrained weights MobileNet V2 contains outliers beyond the chart.

initializations, demonstrating that there is some valid transfer learning that can be

extracted from the classification problem.

The side by side violin plot in Figure 45 graphically demonstrates the distribu-

tion of the validation MAE minus the training MAE. Each model’s validation error

distribution is only marginally better than the untrained weight initializations. This

indicates that through additional training untrained initializations could have similar

results.

The Xception and DenseNet 201 models had the lowest validation error of the

model’s trained, both with pretrained weights and untrained. The Xception model

had lower validation errors than DenseNet 201 when pretrained weights were used.

Although, the validation errors were nearly even when untrained initializations were

used. DenseNet 201 and Xception were the most effective in generalizing the training

data. MobileNet V2 consistently had higher validation errors than the others, but

they were within a reasonable margin of error from the other CNNs. Inception V3

and ResNet were not far off the leaders by the end of the validations. As seen in the

hyper-parameter comparison, better validation errors do not necessarily transfer into

an accurate network on the test set.
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4.3.2 Testing
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Figure 46. Prediction RMS Error results for Models: MobileNet V2, Inception V3,
ResNet 50, Xception, and DenseNet 201. Each model initialized with pretrained Ima-
genet weights and trained 150 epochs.
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Figure 47. Prediction RMS Error results for Models: MobileNet V2, Inception V3,
ResNet 50, Xception, and DenseNet 201. Each model initialized with untrained Glorot
uniform weights and trained 150 epochs.

The performance on the test dataset was similar to that during training for each

CNN model. Table 4 shows the RMS error statistics for each model trained. The mo-

bileNet V2 was the worst performer, followed by ResNet 50. There were no models

that performed exceptionally well without indicating during training. The perfor-

mance of Xception exceeded expectations. Xception’s mean RMS error was 85.5

meters after training with pretrained Imagenet weights. Each model trained with
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Table 4. Each model’s weights were intialized with either pretrained Imagenet weights
(Imagenet), or untrained Glorot uniform weight initializations (Untrained) prior to 150
epochs of training. This displays pertinent statistics relating to each model’s perfor-
mance on the test dataset.

Test Set Frobenius Norm Error after 150 Training Epochs (Meters)
Model Type
(Initializer)

Mean Error Median Max Error Min Error

MobileNet V2
(Imagenet)

307.307 186.034 8813.559 1.494

MobileNet V2
(Untrained)

348.788 251.728 8735.828 1.648

InceptionV3
(Imagenet)

222.459 158.414 8349.126 2.122

InceptionV3
(Untrained)

277.351 198.821 6909.972 1.572

ResNet 50 (Imagenet) 262.674 170.082 8834.585 2.985
ResNet 50
(Untrained)

330.408 224.358 8129.125 1.951

Xception (Imagenet) 85.492 59.791 10524.034 0.416
Xception (Untrained) 179.109 115.716 9515.350 1.223
DenseNet 201
(Imagenet)

129.266 109.439 6297.735 1.279

DenseNet 201
(Untrained)

203.251 146.420 7894.755 1.025
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Figure 48. Xception with Imagenet initializations; This displays the actual locations of
the worst 100 test set errors for the Xception model.

pretrained Imagenet weights outperformed its sister model trained with untrained

weight initializations when evaluated on the test set.

The training error distribution indicated in Figures 46 and 47 sheds further light

on the difference between the various networks ability to classify coordinates properly.

Xception’s distribution in Figure 46 provides accurate localization data reliably. The

distributions for the other models, including Xception with Glorot uniform initializa-

tions in Figure 47, require additional training to achieve admissible results.

The geographic distribution of the highest error rates for the best performing

model, Xception with Imagenet initialization, is in Figure 48. This shows images
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Figure 49. MobileNet V2 with Imagenet initializations; This displays the actual loca-
tions of the worst 100 test set errors for the MobileNet V2 model.

that are difficult to classify, but also portrays some images that could be classifiable,

indicating that additional training could improve this network. The worst performing

model with the Imagenet initialization, MobileNet V2, is shown in Figure 49. The

geographic distribution of errors for MobileNet V2 displays many images that are

difficult or impossible to classify. This also indicates that geographically localized

errors are not necessarily bad, such as these with heavy cloud cover or unreadable

images, but that we need to address them by throwing out images that cannot be

localized.

90



4.4 Summary

The dataset contains unique traits due to the nature of processing the satellite

data. These traits had an affect on the training and testing of the networks. Even

with the powerful AWS instances, training time was a limiting factor, as many of the

CNN models required over 20 hours to train for 150 proscribed epochs.

The Hyper-parameter Comparison discussed in Section 4.2 had diverse training

and testing performance. The three hyper-parameters were optimizers, finishing lay-

ers, and weight initializers. RMS prop optimizer, flatten finishing layer, and orthog-

onal weight initializations performed the best during training. These three hyper-

parameters were combined to create a super-model to train for 150 epochs. Testing

demonstrated that Adam optimizer, flatten finishing layer, and Glorot normal per-

formed the best. The super-model outperformed the default model, see Section 3.3,

when both models were trained for 150 epochs.

Each model was trained twice the first with pretrained Imagenet weight initial-

izations, and the second with untrained Glorot uniform weight initialization. During

training, the Xception and DenseNet 201 models outperformed the others. On the

test set, Xception performed the best.
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V. Conclusion

Each network in this research was designed to take a single aerial image within

the greater Dayton, Ohio area, and output an estimate for the geographic coordi-

nates for that image. A study was performed on the effect hyper-parameters and

model architectures can have on the training and perfomance of a CNN for aerial

visual localization. An aerial image dataset was created using raw satellite images

and their local coordinates. Nine hyper-parameters were studied in the areas of op-

timizers, finishing layers, and weight initializations. Five leading model architectures

were analysed through training and evaluation on the dataset. Finally, a Minimum

Mean Squared Error (MMSE) loss function was created and evaluated against the

traditional Mean Squared Error (MSE) loss.

5.1 Hyper-parameter Analysis

Three hyper-parameters were varied, optimizers, finishing layers, and weight ini-

tializations. The optimizers and weight initializations had no affect on network size,

but the finishing layers did. The Inception V3 model with a flatten finishing layer

had 74,200,226 trainable parameters, where as the global average pooling and global

max pooling models only had 23,868,578 trainable parameters. Performance on the

test set did improve from the default model when using the flatten finishing layer,

implying that the increased parameters may be needed to better solve the aerial lo-

calization problem. The test set RMS mean error with flatten was 295 meters lower

than the global average pooling finishing layer. However, global max pooling was 116

meters higher than flatten with a significantly smaller overhead. A combination of

global max pooling and global average pooling would create only a marginally larger

network, but could potentially add a significant dimensionality feeding into the clas-
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sification layer that may improve the performance nearly to the level that flattening

provided.

Orthogonal weight initializations dramatically reduced the volatility in the valida-

tion errors during training, and training validation errors between epochs were better

than the other two weight initializations: Glorot uniform and Glorot normal. Yet,

this error rate did not translate into proper training, as the orthogonal initializer was

out performed by both the Glorot Uniform and Glorot normal. Glorot normal ini-

tialization had the lowest test set performance of the three and the test RMS median

value was 258 meters less than orthogonal, which was significant.

The optimizer, RMS prop, had reduced volatility in the validation error during

training when compared to the other optimizers in the study. Regrettably, this pat-

tern did not hold through to the test set either. RMS prop had the worst test set

RMS mean error of all the models trained in the hyper-parameter study. The Adam

optimizer, which had the worst training performance, did the best between the three

optimizers in testing. The performance of Adadelta was in the middle of Adam and

RMS prop in training and testing.

The super-model, which was designed with the best hyper-parameters on the

training set (RMS prop, flatten, and orthogonal initialization) displayed how effective

the additional trainable parameter could be with a fully trained network. The super-

model was trained along with the default model for 150 epochs. The test set RMS

error for the default model was 657 meters, where as the super-model achieved 299

meters. The additional trainable parameters provided by the flatten finishing layer

had a significant effect on the performance for this dataset, once it was sufficiently

trained at a level of 150 epochs. There remains the possibility that the performance

observed in the hyper-parameter study could drastically change if the training could

have extended further than the allowed 50 epochs. However, due to the long training
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time of over 15 hours per model, it was impossible to investigate the study at a more

proper level of 150 epochs.

5.2 CNN Model Architecture Comparison

Five innovative architectures were selected for this study: MobileNet V2, Inception

V3, ResNet 50, Xception, and DenseNet 201. The lessons learned from the hyper-

parameter analysis were implemented into this study. Each model was finished with

the flatten finishing layer and trained with the Adam optimizer. Each architecture

is comparable in total parameters, with MobileNet V2 as the smallest at 66,486,338

and Xception being the largest at 123,625,002. Each model was trained twice with

different initializations. The first was with pretrained Imagenet weights and the

second, was with an untrained Glorot uniform initialization.

Xception and DenseNet 201 (the two with the largest parameter sizes) had the

lowest training validations with and without the imagenet initialization. All the

other models performed similarly during training, with MobileNet V2 as the worst

performer. This would lend additional credibility to a hypothesis that a large number

of parameters are required for processing the data for the aerial localization task. The

difference in training between the models with pretrained Imagenet weights and those

with untrained initializations were significant. This provides evidence that transfer

learning from the classification problem can be applied to this dataset. The error

distributions were also tighter on the Imagenet models, leading to a more accurate

dataset with less error.

After all the models were trained for 150 epochs they were evaluated on the test set.

The Xception model with Imagenet initialization outperformed all other models with

a RMS mean error of only 85 meters. The DenseNet 201, with imagenet initializations,

was close behind with a RMS mean of 129 meters. The training set was designed
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to produce comparable models and not accurate results, so the performance of these

two models, Xception and DenseNet 201, is even more impressive. Models with

pretrained weights out performed their sister models with untrained initializations,

demonstrating again that there is value in the transfer learning from the categorization

problem. Xception and DenseNet 201, with untrained initializations, had better test

set performance than all the other models with pretrained weights. Further training

with Xception and DensNet 201, with a more challenging dataset, could provide even

better aerial localization.

5.3 Real World viability

This study has demonstrated models that successfully identified the location of

an image within an area of interest, with an error range that could be useful given

the availability of other sensor data with which to fuse. With additional training,

and varying the dataset, these models could aid in presenting a solution in a Global

Navigation Satellite Systems (GNSS)-denied environment. The Xception model had

a Euclidean norm accuracy of 85.492 meters. With each image being 700 meters from

edge to edge the average image center location is well within the image.

5.4 Future Work

Some specific was to build on this work would include: comprehensive network

training, utilizing flight test data, and integrating additional sensors. Advanced net-

work training can develop networks that understand the area more completely. Flight

test data would train the network for real world implementation, and integrating into

additional sensors will develop a robust and reliable aerial visual localization solution.

Training a network with on-demand dataset generations can aid the CNN in bet-

ter generalizing the information provided. Enhancing the sample images with varied
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hues and saturations would further diversify the dataset, by simulating different light-

ing conditions and operational environments. Combining the CNN with a Recurrent

Neural Network (RNN) and running simulated flight paths could further develop

consistently better accuracies. Finally, creating a dataset that integrates informa-

tion from additional flight instrumentation into the predictive network could create

impressive accuracies.

Implementing these CNNs into a flight based system is the ultimate goal, and

being that, testing and training the networks with actual flight imagery is the next

step. Flight test imagery can be used through every step of the training and evaluating

the networks. Varying altitudes and challenging the model’s ability to adapt, would

present opportunities to add additional design features or limitations to each model.

Finally, CNNs are only a small piece in a complete solution to GNSS-denied

aerial localization. Flight sensors and instrumentation must be integrated with the

model results to generate solutions that can be generated and validated. This study

has demonstrated justification for further research to the viability of CNNs as a

contributing factor of a larger solution for aerial localization .
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Appendix A. MMSE Loss

1.1 Abstract

A new MMSE loss function takes the minimum error of four estimates from the

network. This loss is designed to develop areas with more features and better re-

gionalization, while being combined with additional sensors such as an Inertial Mea-

surement Unit (IMU) for comprehensive avigation solutions. This loss function will

require additional research to reach state of the art capability.

1.2 Methodology

All of the networks previously studied have one input and one set of output co-

ordinates. This forces the network to select one location based on the image. In

real world flight there are many estimation techniques that can eliminate outliers and

incorrect location coordinates. The ability to have multiple location choices in differ-

ent areas could be useful to an integrating algorithm that selects the most plausible

location based off of IMU estimations against a limited number of location choices.

This section will overview the design of a custom MMSE loss function that could

be used to develop a model with four location choices. If developed properly, the

selections could be integrated into a navigation algorithm to provide a more accurate

location determination than a network trained using a single MSE loss function. The

loss will follow the MSE structure, but instead only return the minimum error per

instance while the other errors will be reduced to zero.

The model will be trained with similar techniques as those used in section 3.4.

MMSE will be the loss, Minimum Mean Absolute Error (MMAE) will be developed

as a metric along with traditional MAE to compare the total error versus the mini-

mum error. The training and performance of this network will be compared to the

97



previous comparisons, and the viability of implementation in a navigation system will

be analyzed.

1.2.1 Minimum Mean Squared Error Loss Function

Navigation using IMUs is well defined[57]. The practice of updating ones position

based on the airspeed, the direction, and the altitude is fairly reliable for a short

time. A system advanced enough to process an image successfully has ability to easily

process IMU information. MMSE provides multiple location estimates and updates,

in this case it is four. Why use four location estimates? The redundancy of data can

easily remove incorrect guesses over time as long as the guesses are diverse and not

clustered in one area. Avigation is completed using more than one instrument, it is

a combination of multiple instruments over time to determine one’s position. The

camera comparison on a CNN will provide one aspect of navigation and the IMU can

provide another. A filter can be utilized to fuse the outputs together.

The problem with outputting four location estimates is that a loss function with

multiple outputs will hold the network accountable for each of the losses together,

and each loss will not be diverse in its location, causing each location output to mirror

itself. To solve this problem, a loss function must be designed to only care about the

minimum loss and ignore the rest of the losses.

MSE was selected because of the property of being a linear differentiable loss

function, in which gradient descent could be used. Also, because MSE is squared, it

punishes rapidly as the error gets further from the correct location. The first step

in developing the MMSE loss function is to take the square error of each output

location. The function then reshapes the output and determines the minimum loss

for each output value. After the minimum loss is calculated, a mask is created so

only the minimum loss remains and the higher losses resort to zero. Finally, the final
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error’s mean is provided to the optimization function.

1.2.2 Specific Design

The model selected for training with the MMSE loss function will be the Inception

V3. Inception V3 was utilized in the hyper-parameter comparison as the default,

and performance in model comparison study adequately justified its continued use

as a default model. The pretrained Imagenet weights will be used because their

performance exceeded the performance of untrained weights. The other conditions

are the same as the model comparison as discussed in section 3.4.

The model will be trained using MMSE and MMAE will be used as the metric.

MMAE uses the same design structure as MMSE with the exception of taking the

absolute error instead of the square error. Traditional MAE will also be reported to

compare over training.

1.2.3 Measuring Performance

The objective of this new loss function is to determine one accurate location

and three locations that are obvious outliers. The success of this function can be

determined if MMAE is low and MAE is high. A high MAE with a low MMAE

indicates that one location is close, and the remaining three are not in the area. This

will also aid algorithms and filters to easily select the correct location from the model

output based off IMU measurements from the last known location.

The model will be compared with the same model trained on a traditional MSE

loss. The performance errors will be analyzed to determine if the model is maintaining

diversified locations for each value. MMAE vs MAE will be compared. The highest

image errors will be visually analyzed. The geographic position of highest errors will

be reviewed and compared to previous studies.
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1.3 Results

The MMSE loss function had a very rapid training rate. The training and vali-

dation exceeded the model trained with the traditional MSE loss function. Unfortu-

nately the training did not translate into performance. The results of investigating

this new loss function are detailed in the next few sections

1.3.1 Training
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Figure 50. This chart compares the traditional training error model and the MMAE
custom loss model with the actual MAE for the custom loss model.

The custom loss was tested on the Inception model using the same parameters

as the Imagenet initialization Inception V3 in the Model Comparison section 4.3.

The interesting phenomenon observed during training the MMSE loss function, is

the difference between the MMAE and the MAE. The training chart in Figure 50
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demonstrates the MAE remains high with minimal improvement while the MMAE

continues to improve throughout training. This means that while there are four

guesses only one of the guesses is correct and the other three are not even in the

ballpark. This is a beneficial phenomenon when combining this model with the output

of an IMU to aid in predicting locations. During training the best guess in validation

is consistently better than the traditional model.

1.3.2 Performance
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Figure 51. The custom Loss displays the RMS Test error for the model trained with
MMSE loss function. The traditional loss utilized MSE loss.

The performance of the custom loss function was not on par with the training

curves. Figure 51 displays The MMSE loss model’s poor performance. The failure

to surpass the MSE trained model could be attributed to over training with the

training set. Utilizing a dataset generator as opposed to a fixed dataset could increase

Table 5. Both model’s weights were intialized with pretrained Imagenet weights prior
to 150 epochs of training. This displays pertinent test set statistics relating to the
Inception V3 model trained with MMSE loss vs the one trained with MSE loss.

Test Set RMS Error after 150 Training Epochs (Meters)
Model Type Mean Error Median Max Error Min Error
MMSE Loss 471.723 195.077 26801.855 1.151
MSE Loss 222.459 158.414 8349.126 2.122
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Figure 52. The Inception V3 model trained with custom MMSE Loss highest 100
geographic error disstribution.

the performance of the MMSE loss function. Table 5 provides information that the

MMSE failed to lower maximum errors with its multiple guesses. The max error of

26,801 it is higher than all the other models trained for 150 epochs in this study.

Figure 52 displays the failure of the MMSE model to select locations for images

with clearly defined features, which is further evidence of over-training. Additional

training modifications to diversify the dataset during training would aid this network

in providing more reliable coordinates on the test set and reduce over-training.
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1.4 Conclusion

MMSE loss function took the minimum error of four guesses. This loss is designed

to develop areas with more features and better regionalization. During training the

loss quickly progressed to local minimum and produces better validation errors con-

sistently over the traditional MSE loss. An indication of the model selecting one ‘in

the money’ guess with the rest out of range, is the total MAE of the function which

remained high throughout the training as the MMSE improved.

Sadly, the training performance did not translate into test performance. The

model trained with MMSE underperformed on the test dataset and had much higher

errors. This phenomenon indicated that the MMSE loss model was overtrained and

memorized the training data as opposed to generalizing the data. In order to test

this hypothesis, additional training and dataset diversification needs to take place.

Training helpers, such as dropout, could aid to force the network to better generalize

the data.
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